Калькулятор расчета емкости конденсатора

Содержание:

И это еще не все

Любой из возможных вариантов БТБП желательно дополнить еще двумя вспомогательными резисторами. Один из них, сопротивление которого может быть в пределах 300кОм…1МОм, включают параллельно конденсатору С гас. Этот резистор нужен для ускорения разрядки конденсатора С гас после отключения устройства от сети. Другой — балластный — сопротивлением 10…51 Ом включают в разрыв одного из сетевых проводов, например, последовательно с конденсатором С гас. Этот резистор будет ограничивать ток через диоды моста VD1 в момент подключения БТБП к сети. Мощность рассеяния обоих резисторов должна быть не менее 0,5 Вт, что нужно для гарантии от возможных поверхностных пробоев этих резисторов высоким напряжением. За счет балластного резистора стабилитрон будет нагружен несколько меньше, но вот средняя потребляемая БТБП мощность заметно увеличится.

Цифровая маркировка конденсаторов онлайн калькулятор

  • Главная
  • Форум
  • Новости
  • Блог
  • Почта
  • Обратная связь
  • Ссылки
  • Сотрудничество
    • Авторам
    • Вебмастерам
  • Расчёты онлайн
    • Калькулятор номинала SMD резистора
    • Генератор символов для LCD HD44780
    • Расчёт делителя напряжения
    • Определение сопротивлений резисторов по цветовой маркировке
    • Расчёт сопротивления резистора для светодиода
    • Расчёт ширины дорожки печатной платы
    • Цветовая маркировка резисторов, конденсаторов и индуктивностей
    • Расчёт резонансной частоты колебательного контура
    • Калькулятор фьюзов AVR
    • Расчёт DC-DC преобразователя на базе MC34063A
    • Расчёт частоты таймера 555
    • Расчёт линейного стабилизатора
    • Конвертер даты и времени в UNIX формат и обратно
  • Cхемы
  • Цифровые устройства
    • Автоматика
    • Программаторы
    • Таймеры, часы, счётчики
    • Для ПК
    • Для дома
    • Игрушки
  • Аналоговые устройства
    • Передатчики и приёмники
    • Генераторы
    • Усилители
    • Видео и ТВ
    • Регуляторы
  • Звукотехника
    • Усилители
    • Фильтры, эквалайзеры
    • Для музыкантов
    • Акустика
    • Разное
  • Светотехника
    • Мигалки
    • Освещение
    • Светоэффекты
  • Детектирование
  • Измерения
    • Осциллографы
    • Измерители L-C-R
    • Вольт/Амперметры
    • Термометры
  • Питание
    • Блоки питания
    • Преобразователи и ИБП
    • Зарядные устройства
    • Альтернативная энергетика
  • Arduino
  • Авто и мото
  • Станки с ЧПУ
  • Статьи
  • Антенны
  • Обучалка
    • Аналоговая техника
    • Цифровая техника
    • Микроконтроллеры
    • Аудиотехника
    • Видеотехника
    • Программные пакеты
    • Измерения
    • Разное
  • Секреты самодельщика
  • Файлы
  • Программы
    • CADs
    • Компиляторы, программаторы
    • Для печатных плат
    • Схемы, панели и шкалы
    • Расчёты
    • Разное
  • Книги
    • Verilog и VHDL
    • Цифровые устройства и МП
    • Математический анализ
    • Основы теории цепей
    • Теория вероятностей
    • РТ цепи и сигналы
    • Метрология
    • Микроконтроллеры
    • Программирование
    • Справочники
    • Схемотехника
    • Устройства СВЧ и антенны
    • РПДУ и УГФС
    • РПУ и УПиОС
    • РТС и СТРТС
    • Телевидение и видеотехника
  • Журналы
    • Радиомир
    • Радиоаматор
    • Радиолоцман
    • Радиолюбитель
    • Радиоежегодник
    • Радиоконструктор
  • Учебные материалы
    • Математический анализ
    • Теория вероятностей
    • РТ цепи и сигналы
    • Радиоавтоматика
    • Метрология
    • ОКиТПРЭС
    • Гуманитарные науки
    • Электроника
    • Цифровые устройства и МП
    • Электродинамика и РРВ
    • Схемотехника
    • УГиФС и РПДУ
    • Основы теории скрытности
    • Устройства СВЧ и антенны
    • УПиОС и РПУ
    • ЭПУ РЭС
    • Оптические устройства
    • ОКПиМРЭС
    • ССПРЭУС
    • РТС и СТРТС
    • СИТ
    • Телевидение и видеотехника
    • Разное
  • Документация
  • Микросхемы
    • 140
    • 143
    • 148
    • 153
    • 154
    • 155
  • Разъёмы
    • Типы разъёмов
    • Распиновка разъёмов
  • Datasheets
    • Analog Devices
    • Atmel
    • Microchip
    • NXP Semiconductors
    • Texas Instruments
  • Маркировка компонентов

Определение ёмкости конденсатора по цифровой маркировке

Цифровая маркировка на малогабаритных конденсаторах чаще всего она встречается виде трёх цифр.

Первые две из них определяют ёмкость в единицах пФ, третья цифра соответствует количеству нулей. Если конденсатор имеет ёмкость меньше 10 пФ, последней цифрой может быть «9». При емкостях меньше 1 пФ первая цифра может быть «0». Буквенное разделение с помощью «R» используется в качестве десятичной запятой. Например, код 020 равен 2.0 пФ, код 0R3 — 0.3 пФ. На ряду с трёхзнаковым цифровым обозначением широко используется и четырёхзнаковое, в этом варианте первые три цифры обозначают ёмкость в пФ, а последняя цифра количество нулей.Маркировка ёмкости в микрофарадах.

Вместо десятичной точки может ставиться буква «R».Смешанная, буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения.

В отличие от первых трёх параметров, которые маркируются в соответствии со стандартами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку. Если в конце кода стоит буква — это допуск. Он совпадает с допуском резисторов.

Схема подключения «Треугольник»

Само подключение является относительно легким, происходит присоединения токопроводящего провода к пусковому конденсатору и к клеммам двигателя (или мотора). То есть если более упрощенно взять есть мотор в нем находятся три токопроводящие клеммы. 1 – ноль, 2 – рабочая, 3 –фаза.

Провод питания заголяется и в нем есть два основных провода в синей и коричневой обмотке, коричневая присоединяется к 1 клемме, ней же присоединяется и один из проводов конденсатора, ко второй рабочей клемме происходит присоединение второго провода конденсатора, ну а к фазе подключается синий провод питания.

Если мощность двигателя является маленькой, до полтора кВт, о в принципе можно использовать только один конденсатор. Но при работе с нагрузками и с большими мощностями обязательное использование двух конденсаторов, они между собой последовательно соединены, но между ними установлен пусковой механизм, в народе называемый «тепловой», который отключает конденсатор при достижении необходимого объёма.

Небольшое напоминание, что конденсатор с меньшей мощностью, пусковой, будет включаться на небольшой промежуток времени для увеличения пускового момента. Кстати модно использовать механический выключатель, который пользователь сам будет включать на заданное время.

Нужно понять – сама обмотка двигателя уже имеет подключение по схеме «звезда», но электрики ее с помощью проводов превращают в «треугольник». Тут главное распределить провода, которые входят в распределительную коробку.

Схема подключения “Треугольник” и “Звезда”

Расчёт необходимой ёмкости

Выбирая конденсатор, необходимо предупредить ситуацию, при которой фазный ток превысит своё номинальное значение. Поэтому к подсчётам необходимо подойти очень тщательно — неправильные результаты могут привести не только к поломке конденсатора, но и перегоранию обмоток двигателя.

На практике для пуска моторов небольшой мощности пользуются упрощённым подбором исходя из соображений, что для каждых 100 Вт мощности двигателя необходимо 7 мкФ ёмкости при соединении в треугольник. При подключении обмотки в звезду это значение уменьшается вдвое. Если в однофазную сеть присоединяют мотор на три фазы с мощностью 1 квт, то необходим конденсатор зарядом 70—72 мкФ при соединении обмоток треугольником, и 36 мкФ в случае подключения звездой.

Расчёт необходимого значения ёмкости для работы производится по формулам.

При схеме соединения звездой:

Ср=2800 I / U

Если обмотки образуют треугольник:

Ср=4800 I / U

I — номинальный ток двигателя. Если по каким-либо причинам его значение неизвестно, для расчёта необходимо воспользоваться формулой:

I = P / (3 U)

При этом U = 220 В при соединении звездой, U = 380в — треугольником.

Р — мощность, измеряемая в ваттах.

Её значение рассчитывают по формуле:

Сп=(2,5÷3,0) Ср

Пусковая ёмкость должна превышать значение рабочей в 2,5 — 3 раза.

Очень важен правильный выбор значения напряжения для конденсатора. Этот параметр, так же как и ёмкость, влияет на цену и габариты прибора. Если напряжение сети больше номинального значения конденсатора, пусковое приспособление выйдет из строя.

Но и использовать оборудование с завышенным напряжением также не стоит. Ведь это приведёт к неэффективному увеличению габаритов конденсаторной батареи.

Оптимальным является значение напряжения конденсатора в 1,15 раз превышающее значение напряжения сети: Uk =1,15 U с.

Очень часто при включении мотора с тремя обмотками в однофазную сеть используются конденсаторы типа КГБ-МН или БГТ (термостойкие). Они выполнены из бумаги. Металлический корпус полностью герметичен. Имеет прямоугольный вид. Необходимо учитывать, что допустимые значения напряжения и ёмкости, обозначенные на приборе, указаны для постоянного тока. Поэтому при работе на переменном токе необходимо уменьшать показатели напряжения конденсатора в 2 раза.

Как подключать конденсаторы

В электротехнике есть два основных вида соединения деталей — параллельное и последовательное. Конденсаторы также можно подключать по любому из указанных способов. Есть ещё особая — мостовая схема. Она имеет собственную область использования.

В схеме может быть последовательное и параллельное соединение конденсаторов

Параллельное подключение конденсаторов

При параллельном соединении все конденсаторы объединены двумя узлами. Чтобы параллельно подключить конденсаторы, скручиваем попарно их ножки, обжимаем пассатижами, потом пропаиваем. У некоторых конденсаторов большие корпуса (банки), а выводы маленькие. В таком случае используем провода (как на рисунке ниже).

Так физически выглядит параллельное подключение конденсаторов

Если конденсаторы электролитические, следите за полярностью. На них должны стоять «+» или «-«. При их параллельном подключении соединяем одноимённые выводы — плюс к плюсу, минус — к минусу.

Расчёт суммарной ёмкости

При параллельном подключении конденсаторов их номинальная ёмкость складывается. Просто суммируете номиналы всех подключённых элементов, сколько бы их ни было. Два, три, пять, тридцать. Просто складываем. Но следите, чтобы размерность совпадала. Например, складывать будем в микрофарадах. Значит, все значения переводим в микрофарады и только после этого суммируем.

Расчёт ёмкости при параллельном подключении конденсаторов

Когда на практике применяют параллельное соединение конденсаторов? Например, тогда, когда надо заменить «пересохший» или сгоревший, а нужного номинала нет и бежать в магазин некогда или нет возможности. В таком случае подбираем из имеющихся в наличии. В сумме они должны дать требуемое значение. Все их проверяем на работоспособность и соединяем по приведенному выше принципу.

Пример расчёта

Например, включили параллельно два конденсатора — 8 мкФ и 12 мкФ. Следуя формуле, их номиналы просто складываем. Получаем 8 мкФ + 12 мкФ = 20 мкФ. Это и будет суммарная ёмкость в данном случае.

Пример расчёта конденсаторов при параллельном подключении

Последовательное соединение

Последовательным называется соединение, когда выход одного элемента соединяется со входом другого. Сравнить можно с вагонами или цепочкой из лампочек. По такому же принципу последовательно соединяют и конденсаторы.

Вот что значит последовательно соединить конденсаторы

При подключении полярных электролитических «кондеров» надо следить за соблюдением полярности. Плюс первого конденсатора подаете на минус второго и так далее. Выстраиваете цепочку.

Как определить ёмкость последовательно соединенных конденсаторов

При последовательном соединении конденсаторов суммарная ёмкость элементов будет меньше самого маленького номинала в цепочке. То есть, ёмкость последовательно соединённых конденсаторов уменьшается. Это также может пригодиться при ремонте техники — замена конденсатора требуется часто.

Последовательно соединённые конденсаторы

Использовать формулу расчёта приведённую выше не очень удобно, поэтому её обычно используют в преобразованном виде:

Формула расчёта ёмкости при последовательном соединении

Это формула для двух элементов. При увеличении их количества она становится значительно сложнее. Хотя, редко можно встретить больше двух последовательных конденсаторов.

Пример расчёта

Какая суммарная ёмкость будет если конденсаторы на 12 мкФ и 8 мкФ соединить последовательно? Считаем: 12*8 / (12+8) = 96 / 20 = 4,8 мкФ. То есть, такая цепочка соответствует номиналу 4,8 мкФ.

Пример расчета ёмкости при последовательном подключении конденсаторов

Как видите, значение меньше чем самый маленький номинал в последовательности. А если подключить таким образом два одинаковых конденсатора, то результат будет вполовину меньше номинала. Например, рассчитаем для двух ёмкостей по 12 мкФ. Получим: 12*12 / (12 + 12) = 144 / 24 = 6 мкФ. Проверим для 8 мкФ. Считаем: 8*8 / (8+8) = 64 / 16 = 4 мкФ. Закономерность подтвердилась. Это правило можно использовать при подборе номинала.

Расчет заряда конденсатора

После расчета емкости, необходим расчет заряда конденсатора. Начальный заряд прибора равен нулю. Подключением к гальванической батарее или к другому источнику постоянной ЭДС конденсаторы заряжают. Чтобы правильно рассчитать заряд конденсатора от источника постоянной ЭДС, существует также специальный калькулятор конденсаторов онлайн, в котором лишь нужно указать следующие данные:

  • ЭДС источника в Вольтах,
  • сопротивление в Омах,
  • емкость в микроФарадах,
  • время зарядки в миллисекундах.

Каждый такой калькулятор расчета конденсаторов будет также указывать точность вычисления, с которой будут получены результаты. После нажатия кнопки «Рассчитать», в результатах реально получить:

  • постоянную времени RC-сети в миллисекундах,
  • время зарядки в миллисекундах,
  • требуемый начальный ток в Амперах,
  • максимальную рассеиваемую мощность в Ваттах,
  • напряжение в Вольтах,
  • заряд в микроКулонах,
  • энергию в микроДжоулях,
  • а также работу, совершенную источником, в микроДжоулях.

Используя специальные онлайн калькуляторы для расчета конденсатора, вам не придется самостоятельно проводить сложные подсчеты, искать нужные формулы, разбираться и вникать в сложные для вас схемы. Все это сделает калькулятор онлайн за вас.

Подключение пускового и рабочего конденсаторов для трехфазного электромотора

Вот оно соответствие всех нужных приборов элементам схемы

Схема подключения и конденсаторы. Пусковой сверху, рабочий внизу

Теперь выполним подключение, внимательно разобравшись с проводами

Подключение конденсаторов и кнопки выключателя к мотору

Так можно подключить двигатель и предварительно, используя неточную прикидку, и окончательно, когда будут подобраны оптимальные значения.

Подбор можно сделать и экспериментально, имея несколько конденсаторов разных емкостей. Если их присоединять параллельно друг другу, то суммарная емкость будет увеличиваться, при этом нужно смотреть, как ведет себя двигатель. Как только он станет работать ровно и без перенагрузки, значит, емкость находится где-то в районе оптимума. После этого приобретается конденсатор, по емкости равный этой сумме емкостей испытываемых конденсаторов, включенных параллельно. Однако можно при таком подборе измерять фактический потребляемый ток, используя измерительные токовые клещи, а провести расчет емкости конденсатора по формулам.

Другие методы расчёта конденсатора для трехфазного двигателя

Расчёт конденсатора по мощности двигателя

Это довольно грубый расчёт и заключается он в том, что ёмкость подбирается по мощности. Существуют различные формулы, но все они сводятся к тому, что нужно брать 6-7 мкФ на 100 ватт мощности или 60-70 мкФ на 1 кВт. Насколько верны эти расчёты? Простой реальный пример. Двигатель 1,1 кВт имеет номинальный ток около 4,8 ампера при соединении обмоток треугольником. Следовательно, конденсатор для номинального режима будет 105 мкФ (не 60 и не 70).

Расчёт конденсатора через напряжение

Вспоминаем закон Ома, делаем небольшие умозаключения и понимаем, что полученный ток посредством электромагнитной индукции и магнитных потоков будет создавать напряжение. Обмотки сдвинуты на угол 120°. Дальше углубляться в теорию не будем, но из сказанного можно понять, что сдвигая конденсатором ток мы получаем как бы трехфазное напряжение. Следовательно, если токи в обмотках будут равны, то и напряжения тоже будут равны. Исходя из этого понимания можно подобрать точное значение конденсатора имея под рукой только вольтметр. Этот метод подбора ёмкости конденсатора можно назвать самым точным

Внимание на экран:

При использовании данного метода лучше всего использовать два вольтметра, так вы сразу будете видеть результат, так сказать, в онлайн режиме. Вся задача сводится к тому, чтобы подключая или отключая дополнительные конденсаторы привести значения первого и второго вольтметра к одному напряжению. Помните, что вы будете работать с опасным напряжением, поэтому перед работой прочитайте технику безопасности.

Пояснения к расчету

Схема соединения обычно отмечена на самом конденсаторе, и может обозначаться либо звёздой, либо треугольником. Как правило, это две разные формы, ёмкость которых рассчитывается, по- разному:

Схема подключения рабочего и пускового конденсатора при разных способах подключения обмоток Расчетные зависимости
Ср = 2800*I/U; I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Ср = 4800*I/U; I = P/(√3*U*η*cosϕ)

Ср – емкость рабочего конденсатора

Сп = 2,5*Ср, где Сп – емкость пускового конденсатора при любом способе подключения

Расшифровка обозначений:

Ср – емкость рабочего конденсатора, мкФ Сп – емкость пускового конденсатора, мкФ I – ток, А U – напряжение в сети, В η – КПД двигателя в %, деленных на 100 cosϕ – коэффициент мощности

Полученные результаты расчета используются для подбора конденсаторов нужных номиналов. Номинала именно расчетного значения вряд ли можно будет найти, поэтому правила подбора следующие:

  • если расчетное значение точно попало в существующий номинал, то в этом случае повезло – берете именно такой.
  • если совпадения нет, то рекомендуется выбирать емкость ближайшего нижнего номинального значения. Выбирать выше не следует (особенно для рабочих конденсаторов), так как существует вероятность значительного возрастания рабочих токов и перегрева обмоток.
  • По напряжению конденсаторы обязательно подбираются с номиналом не менее, чем в 1,5 раза выше напряжения сети, поскольку в момент пуска напряжение на самом конденсаторе всегда повышенное. Например, для однофазного напряжения 220 В рабочее напряжение конденсатора должно быть не менее 360 В, а по опыту электриков даже не менее 400 В.

Ниже мы приведем таблицу номинальных значений конденсаторов серий СВВ60 и СВВ65. Эти конденсаторы чаще всего применяют при подключении асинхронных двигателей. Серия СВВ65 отличается от серии СВВ60 металлическим корпусом. В качестве пусковых часто применяют электролитические конденсаторы серии CD60. Причем опытные профессионалы не рекомендуют использовать их в качестве рабочих, поскольку продолжительные время работы быстро выводит их из строя.

Полипропиленовые пленочные конденсаторы серий СВВ60 и СВВ65 Электролитические неполярные конденсаторы серии CD60
Изображение
Номинальное рабочее напряжение, В 400; 450; 630 220-275; 300; 450
Номинальный ряд, мкФ 1,5; 2,0; 2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 5; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500

Иногда бывает рациональнее использовать два и более конденсатора, чтобы получить нужную емкость. При этом они могут быть соединены последовательно или параллельно. При параллельном соединении результирующая емкость будет складываться, при последовательном она будет меньше емкости любого из конденсаторов. Для расчета данного соединения мы также подготовили для вас специальный калькулятор.

Емкость конденсатора

Наиболее значимый параметр данного прибора – это его ёмкость. От нёё зависят его сфера применения, условия эксплуатации и назначение. Измеряется ёмкость в фарадах. В отечественной литературе данный параметр обозначается буквой «Ф», в зарубежной –  «F». На самих электронных компонентах можно встретить такую буквенную кодировку: pF, nF или uF. Она указывают на то, что радиодеталь обладает ёмкостью, равной 10-12, 10-9 и 10-6 фарад. Рядом также будет маркировка цифрами, выполняющими роль множителя, т.е. 2,2uF = 2,2*10-6 фарад.

Дополнительная информация. Отрицательная степень десяти часто вызывает трудности даже у бывалых специалистов. Для удобного преобразования единиц измерения всегда можно использовать калькулятор конденсаторов онлайн. Также для того, чтобы вычислить ёмкость имеющейся детали, подойдёт цифровой мультиметр с соответствующим режимом измерения.

Сам конденсатор представляет собой пару металлических пластин. Их поперечные размеры должны быть намного больше, чем расстояние между ними. Посередине пластин помещён слой диэлектрика. Во время работы прибора на его выводы подаётся напряжение. В результате электроны пытаются прийти в движение, но не могут преодолеть диэлектрик, из-за чего между пластинами накапливается некоторый электрический заряд. Он измеряется в кулонах. Способность конденсатора накапливать электрический заряд называется его ёмкостью. Если рассматривать аналогию с сосудом для жидкости, то это его объём.

Программа для определения емкости конденсатора по цифровой маркировке

Данная программа позволяет оперативно определить емкость конденсатора по цифровой маркировке. Определение емкости конденсатора выполняется в соответствии со стандартами IEC по таблице 1. Сам принцип определения емкости конденсатора показан на рис.1.

Рис.1 – Определение емкости конденсатора

Рассмотрим на примере определение емкости конденсатора по цифровой маркировке с помощью данной программы. Выберем конденсатор с цифровой маркировкой 104, для данного конденсатора в соответствии с таблицей 1 и представленным методом определения емкости (см.рис.1), емкость составит: 104 = 10 х 104 = 100000 pF = 100 nF = 0,1 µF, для цифровой маркировки 330, емкость составит: 330 = 33 pF = 0,033 nF = 0,000033 µF. Как мы видим, программа правильно определяет емкость конденсатора по цифровой маркировке.

Если же Вам нужно определить емкость конденсатора по цветовой маркировке, воспользуйтесь программой «Конденсатор v1.2».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Хотите быстро рассчитать силу тока, напряжение, мощность или другие электрические величины.

Данный калькулятор расчета основных измеряемых величин в электротехнике, выполненный в программе Microsoft.

Содержание 1. Введение2. Функциональность программы:2.1 Расчет токов КЗ в сети 0,4 кВ — трехфазных.

Представляю Вашему вниманию еще одну программу расчета уставок дифференциальной токовой защиты.

В данной статье речь пойдет о программе расчета уставок дифференциальной токовой защиты.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных. Политика конфиденциальности.

Расчет параметров конденсатора онлайн

Не знаю как Вам, а мне никогда не нравилось работать и вычислять ёмкости конденсаторов. Больше всего раздражало  наличие в исходных  данных, ёмкостей в разных номиналах, в пикофарадах, в нанофарадах, микрофарадах.  Их приходилось переводить в Фарады,  что влекло за собой глупейшие ошибки в расчетах.

Конденсатор — в принципе это любая конструкция, которая может сохранять накопленный электрический потенциал.  Если же эта конструкция, не только хранит электроэнергию, но и генерирует её, то это уже источник электропитания и никак  не конденсатор.

Конструкция конденсаторов может быть любой, но чаще всего в практике используется плоский конденсатор, состоящий из двух проводящих пластин, между которыми находится какой либо диэлектрик.

 Это связано с тем, что расчет ёмкости такого конденсатора ведется по известной формуле и простотой его создания.

Свернув такой плоский конденсатор в рулон, мы получаем, что при фактическом скромном размере  «рулона», там находится плоский конденсатор, длиной в десятки сантиметров и обладающий повышенной ёмкостью.

Емкости конденсаторов некоторых форм известны, и мы дальше их рассмотрим.

Но хотелось бы заметить, что на наш взгляд, потенциал  развития  конденсаторов до  конца не завершен.

Ведь форма конструкции какого либо конденсатора может быть любая, материалы из которого сделаны обкладки или диэлектрический слой  тоже могут быть любыми в пределах таблицы Менделеева.

Единственная сложность, это невозможность теоретически просчитать потенциальную ёмкость, новосозданного (другой конструкции) конденсатора. Это усложняет нахождение самой лучшей конструкции конденсатора.

Данный бот рассчитывает параметры типовых форм конденсаторов. Отличие от других калькуляторов, присутствующих в интернете, это возможность задавать параметры, которые Вам известны, для того что бы рассчитать остальные.

И последнее нововведение, которое вы можете использовать. Вам не обязательно придется переводить заданные данные в  метры, фарады и т.д. Достаточно обозначить размерность данных. 

  • Например, если ёмкость известна и равно 100 пикофарад, то боту можно так и написать c=100пикофарад или с=100пФ, бот сам  переведет в Фарады.
  • Результат, тоже будет выдан оптимально визуальному восприятию пользователя. 
  • Это стало возможно с созданием бота Система единиц измерения онлайн

Плоский конденсатор. Параметры

Полученные характеристики плоского конденсатора

Самая простая и самая распространенная конструкция конденсатора это два плоских проводника разделенных тонким слоем диэлектрика ( то есть материала не проводящего электрический ток).

Ёмкость такого сооружения определяется следующей формулой.

где ε0 = 8,85.10-12 Ф/м — абсолютная диэлектрическая проницаемость

Если же конденсатор состоит не из пары пластин, а каого то n-ого количества плоских пластин то ёмкость такого «слоёного» конденсатора составит

Еще интереснее выглядит формуа такого «слоёного» конденсатора,  если в слоях находятся разные диэлектрики , разной толщины d

  1. S- площадь одной из обкладок конденсатора ( предполагаем что другая обкладка имеет такую же площадь)
  2. d- расстояние между обкладками
  3. С- ёмкость конденсатора
  4. Рассмотрим примеры

Задача: Ёмкость плоского конденсатора 350 нанофарад, расстояние между обкладками 1 миллиметр, и заполнено воздухом. Определить какова площадь обкладок?

Сообщаем боту что нам известно: C=350нФ, d=1мм. Так как у воздуха диэлектрическая проницаемость 1.00059 то e=1.00059. Поле площадь очистим, так именно его мы будем определять

Получаем  вот такой ответ

Полученные характеристики плоского конденсатора
d = 1 милиметр  e = 1.00059  C = 350 нанофарад S = 39.524703024086 м2 

Ответ, площадь обкладок конденсатора при таких значениях должна составлять почти 40 квадратных метров.

Цилиндрический  КОНДЕНСАТОР

Полученные характеристики цилиндрического конденсатора

Цилиндрический конденсатор представляет в простейшем случае две трубки разного диаметра вложенных друг в друга. разделенных диэлетриком

Иногда может получится так, что ёмкость цилиндрического конденсатора станет отрицательной величиной. Ничего страшного, это лишь говорит о том что Вы перепутали радиусы внешней и внутренней оболочки местами.

Схема подключения светодиода к сети 220 вольт

Светоиндикация – это неотъемлемая часть электроники, с помощью которой человек легко понимает текущее состояние прибора. В бытовых электронных устройствах роль индикации, выполняет светодиод, установленный во вторичной цепи питания, на выходе трансформатора или стабилизатора.

Однако в быту используется и множество простых электронных конструкций, неимеющих преобразователя, индикатор в которых был бы нелишним дополнением. Например, вмонтированный в клавишу настенного выключателя светодиод, стал бы отличным ориентиром расположения выключателя ночью.

А светодиод в корпусе удлинителя с розетками будет сигнализировать о наличии его включения в электросеть 220 В.

Ниже представлено несколько простых схем, с помощью которых даже человек с минимальным запасом знаний электротехники сможет подключить светодиод к сети переменного тока.

Схемы подключения

Светодиод – это разновидность полупроводниковых диодов с напряжением и током питания намного меньшим, чем в бытовой электросети. При прямом подключении в сеть 220 вольт, он мгновенно выйдет из строя. Поэтому светоизлучающий диод обязательно подключается только через токоограничивающий элемент. Наиболее дешевыми и простыми в сборке является схемы с понижающим элементом в виде резистора или конденсатора.

Важный момент, на который нужно обратить внимание при подключении светодиода в сеть переменного тока – это ограничение обратного напряжения. С этой задачей легко справляется любой кремниевый диод, рассчитанный на ток не менее того, что течет в цепи

Подключается диод последовательно после резистора или обратной полярностью параллельно светодиоду.

Существует мнение, что можно обойтись без ограничения обратного напряжения, так как электрический пробой не вызывает повреждения светоизлучающего диода. Однако обратный ток может вызвать перегрев p-n перехода, в результате чего произойдет тепловой пробой и разрушение кристалла светодиода.

Вместо кремниевого диода можно использовать второй светоизлучающий диод с аналогичным прямым током, который подключается обратной полярностью параллельно первому светодиоду.

Отрицательной стороной схем с токоограничивающим резистором является необходимость в рассеивании большой мощности. Эта проблема становится особо актуальной, в случае подключения нагрузки с большим потребляемым током. Решается данная проблема путем замены резистора на неполярный конденсатор, который в подобных схемах называют балластным или гасящим.

Включенный в сеть переменного тока неполярный конденсатор, ведет себя как сопротивление, но не рассеивает потребляемую мощность в виде тепла.

В данных схемах, при выключении питания, конденсатор остается не разряженным, что создает угрозу поражения электрическим током. Данная проблема легко решается путем подключения к конденсатору шунтирующего резистора мощностью 0,5 ватт с сопротивлением не менее 240 кОм.

Расчет резистора для светодиода

Во всех выше представленных схемах с токоограничивающим резистором расчет сопротивления производится согласно закону Ома: R = U/I, где U – это напряжение питания, I – рабочий ток светодиода. Рассеиваемая резистором мощность равна P = U * I. Эти данные можно рассчитать при помощи онлайн калькулятора.

Важно. Если планируется использовать схему в корпусе с низкой конвекцией, рекомендуется увеличить максимальное значение рассеиваемой резистором мощности на 30%

Это нужно знать

Главное – это помнить о технике безопасности. Представленные схемы питаются от 220 В сети переменного тока, поэтому требуют во время сборки особого внимания.

Подключение светодиода в сеть должно осуществляться в четком соответствии с принципиальной схемой. Отклонение от схемы или небрежность может привести к короткому замыканию или выходу из строя отдельных деталей.

При первом включении, сборки рекомендуется дать поработать некоторое время, чтобы убедиться в ее стабильности и отсутствии сильного нагрева элементов.

Для повышения надёжности устройства рекомендуется использовать заранее проверенные детали с запасом по предельно допустимым значениям напряжения и мощности.

Собирать бестрансформаторные источники питания следует внимательно и помнить, что они не имеют гальванической развязки с сетью. Готовая схема должна быть надёжно изолирована от соседних металлических деталей и защищена от случайного прикосновения. Демонтировать её можно только с отключенным напряжением питания.

Небольшой эксперимент

Чтобы немного разбавить скучные схемы, предлагаем ознакомится с небольшим экспериментом, который будет интересен как начинающим радиолюбителям, так и опытным мастерам.

Кодовая или цифровая маркировка конденсаторов

Кодировка конденсаторов тремя цифрами

Первые две цифры указывают на значение емкости в пикофарадах (пф), последняя — количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть «9». При емкостях меньше 1.0 пф первая цифра «0». Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пф, код0R5 — 0.5 пФ.

* Иногда последний ноль не указывают.

Смешанная буквенно-цифровая маркировка ёмкости, допуска, ТКЕ, рабочего напряжения

В отличие от первых трех параметров, которые маркируются в соответствии со стандар- тами, рабочее напряжение у разных фирм имеет различную буквенно-цифровую маркировку.

Информация

Кроме буквенно-цифровой маркировки конденсаторов, применяется способ цифровой маркировки тремя или четырьмя цифрами по стандартам IEC.

При таком способе маркировки конденсаторов первые две или три цифры обозначают значение емкости в пикофарадах (пФ), а последняя цифра — количество нулей. При обозначении емкостей менее 10 пФ последней цифрой может быть «9» (109 = 1 пФ), при обозначении емкостей 1 пФ и менее первой цифрой будет «0» (010 = 1 пФ). В качестве разделительной запятой используется буква R (0 R 5 = 0,5 пФ).

При маркировке емкостей конденсаторов в микрофарадах, применяется цифровая маркировка: 1 — 1 мкФ, 10 — 10 мкФ, 100 — 100 мкФ. В случае необходимости маркировки дробных значений емкости в качестве разделительной запятой ис­пользуется буква R : R 1 — 0,1 мкФ, R 22 — 0,22 мкФ, 3 R 3 — 3,3 мкФ (при обозначении емкости в мкФ перед буквой R цифра 0 не ставится, а она ставится только при обозначении емкостей менее 1 пФ).

После обозначения емкости, может быть нанесен буквенный символ, обозначающий допустимое отклонение емкости конденсатора.

В статье частично использовался материал со следующих источников: Источник 1 | Источника 2

Ток при последовательном соединении конденсаторов

Электрический ток бывает двух видов: постоянным и переменным. Для работы ёмкостей это имеет большое значение.

Конденсатор и постоянный ток

Маркировка танталовых smd конденсаторов

Постоянный ток через конденсатор не проходит вообще. Справедливо это и для линейки из последовательно соединённых ёмкостей. Объясняется такой эффект опять же конструкцией самого электронного прибора. Конденсатор имеет две металлические обкладки. В простых электролитических приборах они сделаны из алюминиевой фольги. Между ними расположен тонкий слой диэлектрика (оксид алюминия). Если приложить к обкладкам разность потенциалов (напряжение), то ток потечёт, но только очень короткое время, пока конденсатор полностью ни зарядится. Далее движение носителей заряда прекратится, т.к. они не смогут пройти через диэлектрик. В этот момент можно сказать, что электрический ток равен нулю, и конденсатор его не пропускает.

Конденсатор и переменный ток

При переменном токе носители заряда периодически меняют своё направление. В случае с бытовой сетью изменение происходит 50 раз в секунду. Поэтому говорят, что частота тока в розетке равна 50 Гц.

Важно! Конденсаторы способны накапливать и длительно удерживать заряд. При работе с ёмкостями, заряженными от сети 220 В, их всегда следует разряжать сопротивлением в 100-1000 ом

Несоблюдение правила однажды приведёт к неприятному удару током.

Конденсатор определённо пропустит переменный ток, но не факт, что весь. Количество носителей заряда, которые смогут пройти через этот электронный прибор, зависит от ёмкости конденсатора, приложенного к нему напряжения и частоты смены направления зарядов. Математически это выражается так:

I = 2pfCU.

Здесь I – это электрический ток с частотой f, проходящий через конденсатор ёмкостью C, если к его обкладкам приложить напряжение U. 2 – просто число, а p = 3.14.

Такая способность конденсаторов ограничивать переменный ток широко применяется в аудиотехнике для построения различных звуковых фильтров. Изменяя ёмкость, можно влиять на частоту сигнала, которую она пропускает.

Фильтр на основе ёмкости

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector