Расшифровка цифровой и буквенной маркировки smd резисторов
Содержание:
- Маркировка резисторов SMD. Калькулятор онлайн
- Шаги изготовления платы по ТМП
- Прозвон резистора
- Разновидности маркировки SMD резисторов
- Терморезисторы типоразмеров 0805 и 0603
- Сантехника
- Маркировка SMD-резисторов: хитрости вычисления номинала
- Цифровые маркировки
- Технология поверхностного монтажа SMD-резисторов
- Резистор.
- Универсальная таблица цветов
- Цветовая маркировка резисторов.
Маркировка резисторов SMD. Калькулятор онлайн
Прежде всего следует обратить внимание на относительно новый и не всем знакомый стандарт маркировки EIA-96, который состоит из трёх символов — двух цифр и буквы. Компактность написания компенсируется неудобством расшифровки кода с помощью таблицы
Трёхсимвольная маркировка EIA96
Кодировка планарных элементов (SMD) в стандарте EIA-96 предусматривает определение номинала из трёх символов маркировки для прецизионных (высокоточных) резисторов с допуском 1%.Первые две цифры — код номинала от 01 до 96 соответствует числу номинала от 100 до 976 согласно таблице.Третий символ — буква — код множителя. Каждая из букв X, Y, Z, A, B, C, D, E, F, H, R, S соответствует множителю согласно таблице.Номинал резистора определится произведением числа и множителя.
Принцип расшифровки кодов SMD резисторов стандартов E24 и E48 значительно проще, не требует таблиц и описан отдельно ниже.
Предлагается онлайн калькулятор для раскодировки резисторов EIA-96, E24, E48.
Сопротивление 0ом ±1%, EIA-96 в результате вычислений означает некорректный ввод.
Впишите код стандарта EIA-96 (регистр не учитывается), либо 3 цифры E24, либо 4 цифры E48
Сопротивление: 165ом ±1%, EIA-96
Таблица EIA-96
|
|
Трёхсимвольная маркировка E24. Допуск 5%
Маркировка из трёх цифр. Первые две цифры — число номинала.
Третья цифра — десятичный логарифм множителя.
0=lg1, множитель 1.1=lg10, множитель 10.2=lg100, множитель 100.3=lg1000, множитель 1000.И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
В данной статье используйте окно калькулятора выше, что и для EIA-96.
Четырёхсимвольная маркировка E48. Допуск 2%
Маркировка состоит из четырёх цифр. Первые три цифры — число номинала.
Четвёртая цифра — десятичный логарифм множителя.
0=lg1, множитель 1.1=lg10, множитель 10.2=lg100; Множитель 100.
3=lg1000, множитель 1000.И т.д., соответственно количеству нулей множителя.
Произведение числа и множителя определит номинал резистора.
Можно использовать окно ввода ниже (только для E48), либо вводить 4 цифры в общее верхнее окно.
Введите код SMD резистора E48
Сопротивление: 22.2kом ±2%, E48
Формулы и расчёты электронный цепей онлайн |
Параметры синусоидального сигналаПеременный ток. Параметры |
Постоянный ток. Определение |
Электроника в домах. ФорумТранзисторы. Справочник |
Диоды. Справочник |
Стабилитроны. Справочник |
Реактивное сопротивлениеРезонансная частота |
ESR конденсатора |
Измерение ESR |
Отключить защиту инвертора
Замечания и предложения принимаются и приветствуются!
Шаги изготовления платы по ТМП
Изготовление ТМП-платы затрагивает как процесс ее проектирования, изготовления, подбор определенных материалов, так и специфические технические средства для припаивания чипов на плату.
- Проектирование и изготовление платы — основа для монтажа. Вместо отверстий для сквозного монтажа делаются контактные площадки для припаивания плоских контактов элементов.
- Нанесение паяльной пасты на площадки. Это можно делать шприцем вручную или с помощью трафаретной печати при массовом изготовлении.
- Точная установка компонентов на плату поверх нанесенной паяльной пасты.
- Помещение платы со всеми компонентами в печь для пайки. Паста оплавляется и очень компактно (благодаря присадкам, увеличивающим поверхностное натяжение припоя) припаивает контакты с одинаковым качеством по всей поверхности платы. Однако критичны требования как ко времени операции, температуре, так и к точности химического состава материалов.
- Окончательная обработка: остывание, мойка, нанесение защитного слоя.
Монтаж платы
Печатная плата
Различаются варианты технологии для серийного и для ручного производства. Массовое производство при условии широкой автоматизации и последующем контроле качества дает и гарантировано высокие результаты.
Однако SMT-технология может вполне уживаться и с традиционным монтажом на одной плате. В этом случае как раз и может быть востребован монтаж SMT вручную.
Прозвон резистора
Резистор можно и нужно прозванивать. Прозвонить можно и без выпаивания элемента с платы. Прозванивание элемента на обрыв производится следующим образом:
- Включить мультиметр и выключить прибор, если прозвонка осуществляется без выпаивания;
- Мультиметром без учета полярности прикоснуться к выводам электрорезистора;
- Зафиксировать значение. Если оно равно единице, то это свидетельствует о неисправности и произошел обрыв, а сам элемент следует заменить.
При невыпаивании следует учитывать тот факт, что если схема сложная, то, возможно, придется делать прозвонку через обходные пути и цепи. О 100 % неисправности элемента сказать можно лишь тогда, когда хотя бы одна из его ножек выпаяна.
Выполнение прозвонки электрорезистора
Разновидности маркировки SMD резисторов
Важной характеристикой резисторов считается типоразмер. Простыми словами говоря, это величина, длина и ширина корпуса
Именно учитывая эти элементы, удается подобрать соответствующие разводке платы.
Рассмотрим, некоторые типовые размеры резисторов и их расшифровку по цифрам:
- SMD-резисторы 0201: длина =0,6 мм, ширина =0,3 мм, высота =0,23 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,05 Вт, напряжение максимум 50 В.
- SMD-резисторы0402: длина =1,0 мм, ширина =0,5 мм, высота =0,35 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,05 Вт, напряжение максимум 100 В.
- SMD-резисторы 0603: длина =1,6 мм, ширина =0,8 мм, высота =0,45 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,01 Вт, напряжение максимум 100 В.
- SMD-резисторы 0805: длина =2,0 мм, ширина =1,2 мм, высота =0,4 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,125 Вт, напряжение максимум 200 В.
- SMD-резисторы 1206: длина =3,2 мм, ширина =1,6 мм, высота =0,5 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,25 Вт, напряжение максимум 400 В.
- SMD-резисторы 2010: длина =5,0 мм, ширина =2,5 мм, высота =0,55 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 0,75 Вт, напряжение максимум 200 В.
- SMD-резисторы 2512: длина =6,35 мм, ширина =3,2 мм, высота =0,55 мм. Номинальные значения составляют 0 Ом, 1 Ом — 30 МОм. Мощность всего 1 Вт, напряжение максимум 400В.
Из этого следует, что если увеличивается маркировка чип резисторов, то повышается и номинальная рассеиваемая мощность.
Трехзначные цифры
Если маркировка осуществляется при помощи 3-х цифр, то первые две указывают на количество Ом, а последняя – количество нулей. Именно таким образом маркируются резисторы из ряда Е-24, отклонение может составлять 5%. Например, типоразмер резисторов с маркировкой 0603, 0805 и 1206.
Четырехзначные цифры
Если маркировка осуществляется при помощи 4-х цифр, то тогда первые 3 цифры – это количество Ом, а последняя – нули. Именно так составляется описание резисторов из ряда Е-96 с типоразмерами 0805, 1206. Если дополнительно еще можно рассмотреть буквенные значения, например букву R, то она играет роль запятой, которая делит доли. Например, если маркировка 4402, то это можно расшифровать, как 44 000 Ом или 44 кОм.
Стандарт EIA-96
Если резистор представлен комбинацией из букв и цифр, то первые два знака – значение Ом. Начинать маркировать детали могут с букв именно таким, и является стандарт EIA-96.
Терморезисторы типоразмеров 0805 и 0603
Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм. |
NTC Термисторы EWTF03
Номиналом: 10 кОм, 22 кОм, 47 кОм, 100 кОм. |
Маркир. | Номинал | I | Маркир. | Номинал | I | Маркир. | Номинал | I | Маркир. | Номинал |
0 Ом | I | I | I | |||||||
1R0 | 1 Ом | I | 101 | 100 Ом | I | 102 | 1кОм | I | 104 | 100кОм |
1R1 | 1,1 Ом | I | 111 | 110 Ом | I | 112 | 1,1кОм | I | 114 | 110кОм |
1R2 | 1,2 Ом | I | 121 | 120 Ом | I | 122 | 1,2кОм | I | 124 | 120кОм |
1R3 | 1,3 Ом | I | 131 | 130 Ом | I | 132 | 1,3кОм | I | 134 | 130кОм |
1R5 | 1,5 Ом | I | 151 | 150 Ом | I | 152 | 1,5кОм | I | 154 | 150кОм |
1R6 | 1,6 Ом | I | 161 | 160 Ом | I | 162 | 1,6кОм | I | 164 | 160кОм |
1R8 | 1,8 Ом | I | 181 | 180 Ом | I | 182 | 1,8кОм | I | 184 | 180кОм |
2R0 | 2,0 Ом | I | 201 | 200 Ом | I | 202 | 2,0кОм | I | 204 | 200кОм |
2R2 | 2,2 Ом | I | 221 | 220 Ом | I | 222 | 2,2кОм | I | 224 | 220кОм |
2R4 | 2,4 Ом | I | 241 | 240 Ом | I | 242 | 2,4кОм | I | 244 | 240кОм |
2R7 | 2,7 Ом | I | 271 | 270 Ом | I | 272 | 2,7кОм | I | 274 | 270кОм |
3R0 | 3,0 Ом | I | 301 | 300 Ом | I | 302 | 3,0кОм | I | 304 | 300кОм |
3R3 | 3,3 Ом | I | 331 | 330 Ом | I | 332 | 3,3кОм | I | 334 | 330кОм |
3R6 | 3,6 Ом | I | 361 | 360 Ом | I | 362 | 3,6кОм | I | 364 | 360кОм |
3R9 | 3,9 Ом | I | 391 | 390 Ом | I | 392 | 3,9кОм | I | 394 | 390кОм |
4R3 | 4,3 Ом | I | 431 | 430 Ом | I | 432 | 4,3кОм | I | 434 | 430кОм |
4R7 | 4,7 Ом | I | 471 | 470 Ом | I | 472 | 4,7кОм | I | 474 | 470кОм |
5R1 | 5,1 Ом | I | 511 | 510 Ом | I | 512 | 5,1кОм | I | 514 | 510кОм |
5R6 | 5,6 Ом | I | 561 | 560 Ом | I | 562 | 5,6кОм | I | 564 | 560кОм |
6R2 | 6,2 Ом | I | 621 | 620 Ом | I | 622 | 6,2кОм | I | 624 | 620кОм |
6R8 | 6,8 Ом | I | 681 | 680 Ом | I | 682 | 6,8кОм | I | 684 | 680кОм |
7R5 | 7,5 Ом | I | 751 | 750 Ом | I | 752 | 7,5кОм | I | 754 | 750кОм |
8R2 | 8,2 Ом | I | 821 | 820 Ом | I | 822 | 8,2кОм | I | 824 | 820кОм |
9R1 | 9,1 Ом | I | 911 | 910 Ом | I | 912 | 9,1кОм | I | 914 | 910кОм |
10R(100) | 10 Ом | I | 102 | 1кОм | I | 103 | 10кОм | I | 105 | 1МОм |
11R(110) | 11 Ом | I | 112 | 1,1кОм | I | 113 | 11кОм | I | 115 | 1,1МОм |
12R(120) | 12 Ом | I | 122 | 1,2кОм | I | 123 | 12кОм | I | 125 | 1,2МОм |
13R(130) | 13 Ом | I | 132 | 1,3кОм | I | 133 | 13кОм | I | 135 | 1,3МОм |
15R(150) | 15 Ом | I | 152 | 1,5кОм | I | 153 | 15кОм | I | 155 | 1,5МОм |
16R(160) | 16 Ом | I | 162 | 1,6кОм | I | 163 | 16кОм | I | 165 | 1,6МОм |
18R(180) | 18 Ом | I | 182 | 1,8кОм | I | 183 | 18кОм | I | 185 | 1,8МОм |
20R(200) | 20 Ом | I | 202 | 2,0кОм | I | 203 | 20кОм | I | 205 | 2,0МОм |
22R(220) | 22 Ом | I | 222 | 2,2кОм | I | 223 | 22кОм | I | 225 | 2,2МОм |
24R(240) | 24 Ом | I | 242 | 2,4кОм | I | 243 | 24кОм | I | 245 | 2,4МОм |
27R(270) | 27 Ом | I | 272 | 2,7кОм | I | 273 | 27кОм | I | 275 | 2,7МОм |
30R(300) | 30 Ом | I | 302 | 3,0кОм | I | 303 | 30кОм | I | 305 | 3,0МОм |
33R(330) | 33 Ом | I | 332 | 3,3кОм | I | 333 | 33кОм | I | 335 | 3,3МОм |
36R(360) | 36 Ом | I | 362 | 3,6кОм | I | 363 | 36кОм | I | 365 | 3,6МОм |
39R(390) | 39 Ом | I | 391 | 390 Ом | I | 393 | 39кОм | I | 395 | 3,9МОм |
43R(430) | 43 Ом | I | 431 | 430 Ом | I | 433 | 43кОм | I | 435 | 4,3МОм |
47R(470) | 47 Ом | I | 471 | 470 Ом | I | 473 | 47кОм | I | 475 | 4,7МОм |
51R(510) | 51 Ом | I | 511 | 510 Ом | I | 513 | 51кОм | I | 515 | 5,1МОм |
56R(560) | 56 Ом | I | 561 | 560 Ом | I | 563 | 56кОм | I | 565 | 5,6МОм |
62R(620) | 62 Ом | I | 621 | 620 Ом | I | 623 | 62кОм | I | 625 | 6,2МОм |
68R(680) | 68 Ом | I | 681 | 680 Ом | I | 683 | 68кОм | I | 685 | 6,8МОм |
75R(750) | 75 Ом | I | 751 | 750 Ом | I | 753 | 75кОм | I | 755 | 7,5МОм |
82R(820) | 82 Ом | I | 821 | 820 Ом | I | 823 | 82кОм | I | 825 | 8,2МОм |
91R(910) | 91 Ом | I | 911 | 910 Ом | I | 913 | 91кОм | I | 915 | 9,1МОм |
106 | 10МОм |
Резисторы или сопротивления, так же как и конденсаторы, являются самыми распространёнными компонентами электронных схем. Резисторы в исполнение для поверхностного монтажа изготавливаются посредством нанесения резистивной пасты на керамическую подложку и последующее ее спекание под воздействием высоких температур. На поверхности резистора как правило указывается номинал сопротивления в условном обозначении. Для увеличения рассеиваемой мощности и повышения стабильности характеристик керамическое основание может быть заменено на металлическое. SMD резисторы предназначены для автоматического монтажа и пайки посредством оплавления паяльной пасты в парогазовой фазе печи инфракрасного нагрева. Резисторы упаковываются в блистер ленту, которая в свою очередь наматывается на пластмассовую катушку.
Наряду с широкой номенклатурой пассивных компонентов: резисторов, конденсаторов, катушек индуктивности, дросселей, разъемов, переключателей, компания поставляет со склада активные компоненты: SMD транзисторы, SMD диоды, стабилитроны, светодиоды, микросхемы.
Сантехника
Основной принцип скандинавского стиля – умеренность во всем. Небольшая ванна (или душевая кабина), умывальник, унитаз – все, что нужно для ванной комнаты. Страны Скандинавии – Норвегия, Швеция и Дания – очень развиты, поэтому и дизайн интерьера, в том числе и сантехника, должны быть современными.
Сегодня можно найти подвесные, угловые или встроенные модели, которые помогут не только выдержать стиль, но и сэкономить дополнительное пространство. В плане цвета оптимальный вариант – классическая белая сантехника. Комплектующие можно подобрать из матового металла. Такой стиль не терпит излишнего декора и впечатляющих экспериментов: чем проще, тем лучше.
Единственным исключением может стать ванна в стиле спа, рассчитанная на достаточную площадь помещения. Расположите ванну по центру и погрузите ее в пол. Наполнив ее ароматной пеной и приукрасив комнату соответствующими косметическими средствами, вы действительно почувствуете себя как в спа-салоне. Усилить эффект скандинавского стиля поможет небольшая дровяная печь и поленница.
Маркировка SMD-резисторов: хитрости вычисления номинала
Аббревиатура SMD часто встречается при монтаже или изучении электронных схем. Это определённый тип компонентов, пришедших на замену классической сквозной пайке. Так как размеры SMD-составляющих значительно отличаются от обычных, то и маркировка на них используется другая. В этой статье мы расскажем, как прочитать маркировку SMD-резисторов, что это вообще такое, и какие способы определения номинала существуют.
Что такое SMD
SMD – английская аббревиатура, обозначающая Surface Mounted Device, то есть – устройство, монтируемое на поверхность. В целом, под SMD понимается метод нанесения компонентов на печатную плату, который ещё называют поверхностным. Ему противопоставляется классический метод — сквозной монтаж, когда ножки элементов продеваются в отверстия монтажной платы и фиксируются в них.
SMD подразумевает установку прямо на токопроводящие дорожки платы. Такой подход позволил значительно сэкономить место на плате, уменьшить размер компонентов и, в целом, удешевить и автоматизировать процесс монтажа. Тем не менее, на практике часто встречается гибрид обеих технологий — сквозного монтажа и поверхностного.
Назначение резисторов
Назначение SMD-резисторов то же самое, что и у обычных — преобразование силы тока в напряжение и наоборот с помощью имеющегося у него сопротивления. Таким образом, основная величина, по которой можно определить нужный резистор — сопротивление. Измеряется оно в Омах. Соответственно, при маркировке на элементе указывается именно количество Ом.
Размеры и обозначения
SMD-резисторы имеют компактные размеры. Самый маленький типоразмер может быть всего 0,4×0,2 мм. Поэтому от стандартной цветовой маркировки решили отказаться. Вместо неё сейчас используется три разных типа обозначений: 3 цифры, 4 цифры и 2 цифры и буква. Но логика распознавания элемента у них одна.
3 и 4 цифры
Всё довольно просто и логично — есть три цифры. Две первые — мантисса, третья — степень, в которую нужно возвести число 10 для получения множителя. Перемножив это всё, получим итоговое сопротивление.
Например, на резисторе стоит 312. 31 — основание, 2 — степень числа 10. В итоге, получается нехитрое выражение 31·10² или 31·100 = 3100 Ом. На самом деле, чтобы не проводить всех этих математических операций, можно просто запомнить, что к первым двум цифрам нужно прибавить указанное третьей цифрой количество нулей. То есть, к 31 просто добавить два нуля.
Маркировка с четырёхзначными числами не отличается методом расшифровки. Просто применяются они для резисторов с точностью в 1%. Например, 7920 будет обозначать всего 792 Ом, так как 10° = 1, и после умножения получаем 792. Или используя более простую методику — после 792 нужно добавить 0 нулей, то есть ни одного.
Цифры и буквы в обозначениях
Тут всё немного усложняется. Во-первых, встречается два вида обозначений: сначала цифры, потом буква и наоборот. Первый используется для маркировки элементов с точностью 1% из номинального ряда Е96. Второй встречается на компонентах с точностью 2%, 5% и 10% из номинальных рядов Е12 и Е24.
Обозначение с двумя цифрами и буквой чем-то похоже по логике на простые цифровые обозначения. Но, так как номиналы сопротивлений берутся из номинального ряда Е96, то закономерности в символах обнаружить не удастся, понадобится таблица. Итак, первые две цифры обозначают код, согласно которому в таблице нужно найти соответствующую мантиссу. Буква — это степень десяти. Вариантов здесь немного и есть хоть какая-то логика: S или Y дают 10־², R или X – 10־¹. Затем по нарастанию: А — 10°или 1, B – 10¹, C – 10² и так далее.
Например, имеем резистор 49R. Смотрим в таблицу — получаем мантиссу 316. Литера R говорит нам, что степень десяти равна -1. То есть, нужно не умножать на 10, а, наоборот — разделить. В итоге, получаем значение 31,6 Ом.
Второй вариант цифро-буквенных обозначений подчиняется тому же принципу, только здесь в цифровом коде ещё зашифрована точность резистора.
Как видно, способ маркировки только цифрами гораздо удобнее и проще, хотя и не позволяет обозначить некоторые номиналы резисторов.
Онлайн-сервисы
На сайте можно узнать номинал резистора, и, наоборот, как будет выглядеть маркировка для определённого сопротивления.
https://www.asutpp.ru/kalkulyator-markirovki-smd-rezistorov.html — аналогичный сервис, с тем же функционалом.
Тоже самое делает сервис https://allcalc.ru/node/940. В общем, подобных инструментов в сети предостаточно.
ИнженерияОбзор системы тёплый пол Devi: особенности, плюсы и минусы
ИнженерияВиды шаровых муфтовых кранов: назначение, устройство, некоторые модели
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
Цифровые маркировки
Цифровые маркировки содержат показатель (N) множителя (10 N) в качестве последней цифры, остальные две или три — мантисса сопротивления.
Номинал пассивных компонентов для поверхностного монтажа маркируется по определенным стандартам и не соответствует напрямую цифрам, нанесенным на корпус. Статья знакомит с этими стандартами и поможет Вам избежать ошибок при замене чип-компонентов.
Основой производства современных средств радиоэлектронной и вычислительной техники является технология поверхностного монтажа или SMT-технология (SMT — Surface Mount Technology). Эту технологию отличает высокая автоматизация монтажа печатных плат. Специально для SMT технологии были разработаны серии миниатюрных безвыводных электронных компонентов, которые еще называют SMD (Surface Mount Devices) компонентами или чип-компонентами. Размеры чип-компонентов стандартизованы во всем мире, как и способы их маркировки.
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ЧИП-РЕЗИСТОРОВ На рис.1 представлен внешний вид чип-резисторов, а в таблицах 1,2 приведены их геометрические размеры и основные технические данные. Типоразмеры SMD резисторов обозначаются четырехзначным числом по стандарту IEA. Обозначения самих же SMD резисторов некоторых зарубежных производителей приведены в табл.3. В нашей стране чип-резисторы также производятся (серия Р1-12).
МАРКИРОВКА ЧИП-РЕЗИСТОРОВ Для маркировки чип-резисторов применяется несколько способов. Способ маркировки зависит от типоразмера резистора и допуска.
Резисторы типоразмера 0402 не маркируются.
Резисторы с допуском 2%, 5% и 10% всех типоразмеров маркируются тремя цифрами, первые две из которых обозначают мантиссу (то есть номинал резистора без множителя), а последняя — показатель степени по основанию 10 для определения множителя.
При необходимости к значащим цифрам может добавляться буква R для обозначения десятичной точки. Например, маркировка 563 означает, что резистор имеет номинал 56х103 Ом = 56 кОм.
Обозначение 220 означает, что номинал резистора равен 22 Ома.
Резисторы с допуском 1% типоразмеров от 0805 и выше маркируются четырьмя цифрами, первые три из которых обозначают мантиссу, а последняя — показатель степени по основанию 10 для задания номинала резистора в Омах.
Буква R также служит для обозначения десятичной точки. Например, маркировка 7501 означает, что резистор имеет номинал 750х10 Ом = 7,5 кОм. Резисторы с допуском 1% типоразмера 0603 маркируются с использованием приведенной ниже таблицы EIA-96 (таблица 4) двумя цифрами и одной буквой.
Цифры задают код, по которому из таблицы определяют мантиссу, а буква — показатель степени по основанию 10 для определения номинала резистора в Омах. Например, маркировка 10С означает, что резистор имеет номинал 124х102 Ом = 12,4 кОм. Литература — Журнал «Ремонт электронной техники» 2 1999:::
Самым распространённым и очень широко применяемым в электронике элементом. является резистор. Это элемент, создающий сопротивление
электрическому току. Номинальные значения зависят от класса точности. Он указывает на отклонение, от номинала, которое допускается техническими условиями. Имеются три класса точности:
- 5 %-ный ряд;
- 10 %-ный;
- 20 %- ный.
Например, если взять резистор I класса с номинальным значением сопротивления 100 кОм, то его натуральная величина находится в пределах от 95 до 105 кОм. У такого же компонента III класса точности величина будет лежать в 20%ном интервале, и равняться 80 или 120 кОм. Кто хорошо знаком с электротехникой, может вспомнить, что существуют прецизионные резисторы с 1%ным допуском.
Термин SMD резистор появился сравнительно недавно. Surface Mounted Devices дословно можно перевести на русский язык как «устройство, монтируемое на поверхность». Чип резисторы, как их ещё называют, используют при поверхностном монтаже печатных плат. Они имеют гораздо меньшие габариты
, чем их проволочные аналоги. Квадратная, прямоугольная или овальная форма и низкая посадка позволяет компактно размещать схемы и экономить площадь.
На корпусе имеются контактные выводы, которые при монтаже крепятся прямо на дорожки печатной платы. Подобная конструкция делает возможным крепить элементы без применения отверстий. Благодаря этому полезная площадь платы используется с максимальным эффектом, что позволяет уменьшить габариты устройств. В связи с тем, что имеют место небольшие размеры элементов, достигается высокая плотность монтажа
Основное преимущество таких элементов — это отсутствие гибких выводов, что позволяет не сверлить отверстия в печатной плате. Вместо них используются контактные площадки.
Технология поверхностного монтажа SMD-резисторов
Монтаж поверхностных резисторов в любительских мастерских осуществляется с помощью фена, а в производственных условиях происходит в специальных печах.
Этапы монтажа деталей на плату в серийном и массовом производстве:
- На плате размещают небольшие прокладки из серебра или золота, свинцово-оловянные пластины, на которых будут закрепляться SMD-компоненты.
- С помощью машины на подготовленные монтажные площадки наносится паяльная паста и смесь, состоящая из флюса и припоя.
- После подготовки печатной платы в устройство (Pick-машину) подаются компоненты в лотках, на рулонах ленты или в трубках. Затем машины размещают их на плате. Производительность оборудования может достигать 60 000 элементов в час.
- Собранная плата поступает в печь с температурой, достаточной для расплавления припоя.
- После извлечения из печи платы охлаждают и очищают от рассеянных частиц припоя.
Качество проверяют визуальным осмотром, в ходе которого определяют отсутствующие детали и степень очистки.
Разработка и внедрение технологии поверхностного монтажа (SMT) позволили автоматизировать процесс сборки плат и ускорить его, сделать проще, дешевле и эффективней. На практике может встречаться гибрид технологий поверхностного и сквозного монтажа.
Применение резисторов поверхностного монтажа положительно сказывается на массе и размерах радиоэлектронных устройств, на их частотных параметрах.
Резистор.
Итак, начнем с основного определения резистора. Резистор — это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжение и наоборот. Ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:
I = \frac{U}{R}
Резисторы являются одними из самых широко используемых компонентов. Редко можно встретить схему, в которой бы не было ни одного резистора Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).
Универсальная таблица цветов
Существует универсальная таблица цветов, которая позволяет проводить быстрый расчет номиналов каждого резистора при необходимости.
При создании подобной таблицы выделяют следующие поля:
- Цвет кольца или нанесенной точки. При этом, указывается как название, так и приводится пример.
- В зависимости от того, каким по счету стоит цвет, есть возможность перевести цветовую кодировку в числовое значение. Это необходимо при создании схемы для условного обозначения номиналов.
- Множитель позволяет провести математическое вычисление того, какое сопротивление имеет рассматриваемый вариант исполнения.
- Также, практически для каждого цвета имеется поле, которое обозначает максимально отклонение от номинала.
Стоит помнить, что каждый цвет может обозначать цифру в маркировке, значение множителя или максимальное отклонение.
Примеры
Пример 1:
Использование подобной таблицы рассмотрим на следующем примере: коричневый, черный, красный, серебристый. Чтение колец проводим слева на право, получаемое значение всегда кодируется в Омах.
Согласно данным из таблицы, проводим следующую расшифровку:
- Коричневый цвет в первом положении обозначает как цифру, так и множитель. В этом случае, цифра будет равна «1», а множитель «10». Стоит отметить, что в первой позиции не могут использоваться следующие цвета: черный, золотистый или белый.
- Второй цвет означает номер второй цифры. Черный означает «0» и он не используется при расчетах. Имея подобные данные, можно сделать вывод, что резистор имеет буквенно-числовую маркировку 1К0.
- Третий цвет определяет множитель. В нашем случае он красный, множитель у этого цвета «100».
- Последний цвет означает максимальный допуск по отклонению, и серебристый цвет соответствует 10%.
Используя таблицу, можно сказать, что рассматриваемый резистор имеет маркировку 1К0 и значение сопротивления 1000 Ом (10*100) или 1 кОм, а также допуск 10%.
Пример 2:
Еще одним более сложным примером назовем расчет номинальных значений следующего резистора: красный, синий, фиолетовый, зеленый, коричневый, коричневый. Данная маркировка состоит из 6 колец.
При расшифровке отмечаем следующее:
1 кольцо, красное – число «2».
2 кольцо, синее – число «6».
3 кольцо, фиолетовое – число «7».
Все числа выбираем из таблицы. При их сочетании получаем число «267».
4 кольцо имеет зеленый цвет
В данном случае обращаем внимание не на числовой значение, а множитель. Зеленый цвет соответствует множителю 105. Проводим расчет: 267*105=2,67 МОм.
5 кольцо имеет коричневый цвет и ему соответствует значение максимального отклонения в обе стороны 1%.
6 линия коричневая, что соответствует температурному коэффициенту в значении 100 ppm/°C.
Из вышеприведенного примера можно сказать, что провести расшифровку маркировки не сложно, и количество колец практически не оказывает влияние на то, насколько сложными будут расчеты. В рассматриваемом случае, резистор имеет сопротивление 2,67 МОм с отклонением в обе стороны 1% при температурном коэффициенте 100 ppm/°C.
Процедуру можно упростить, воспользовавшись специальными калькуляторами. Однако, не многие проводят вычисление 6 колец, что стоит учитывать.
Номинальные ряды резисторов можно назвать результатом проведения стандартизации номинальных значений. Постоянные резисторы имеют 6 подобных рядов. Также, введен один ряд для переменных номиналов и специальный ряд Е3.
На примере приведенного номинала проведем расшифровку:
- Буква «Е» обозначает то, что проводится маркировка по ряду номинала. Эта бука всегда идет в обозначении.
- Цифры после буквы означает число номинальных значений сопротивления в каждом десятичном интервале.
Существуют специальные таблицы с отображение номинальных рядов.
Для выявления стандартных рядов, был принят ГОСТ 2825-67. При этом, можно выделить несколько наиболее популярных стандартных рядов:
- Ряд Е6 имеет отклонение в обе стороны 20%.
- Ряд Е 12 имеет допустимое отклонение 10%.
- Ряд Е24 обладает показателем максимально допустимого отклонения в обе стороны 5%.
Последующие ряды Е48 и Е96, Е192 обладают показателем отклонения 2%, 1%, 0,5% соответственно.
Цветовая маркировка резисторов.
Большинство резисторов имеют цветовую маркировку, такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если всего полосок 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос. Когда на резисторе 4 полосы, то четвертая будет указывать на точность резистора. А в случае, когда полос всего пять, то ситуация несколько меняется — первые три полосы означают три цифры сопротивления резистора, четвертая — множитель, пятая — точность. Соответствие цифр цветам приведено в таблице:
Тут есть еще один немаловажный момент — а какую именно полосу считать первой? Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:
Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса — множитель — в данном случае он равен 103. И, наконец, пятая полоса — погрешность — 10%. В итоге мы получаем резистор 510 КОм, 10%.
В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.
Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу…