Пуэ-7 п.1.3.25-1.3.32 выбор сечения проводников по экономической плотности тока
Содержание:
- Удельное сопротивление меди и алюминия для расчетов
- Соотношение тока и сечения
- Как правильно произвести расчет по другим показателям
- Чем отличается кабель от провода
- 1.3.31
- Расчет по току с применением дополнительных параметров
- 1.3.27
- Порядок сдачи в эксплуатацию
- Расчет на онлайн калькуляторе
- 1.3.28
- Допустимый длительный ток для трехжильных кабелей на напряжение 6 кВ с медными и алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле и в воздухе
- Включение КТП-1000 в работу
- Конструктивное исполнение
- Как рассчитать сечения кабеля по мощности
- Удельное сопротивление кабеля таблица
- Выбор сечения провода исходя из количества потребителей
Удельное сопротивление меди и алюминия для расчетов
Несмотря на то, что данная тема может показаться совсем банальной, в ней я отвечу на один очень важный вопрос по расчету потери напряжения и расчету токов короткого замыкания. Думаю, для многих из вас это станет таким же открытием, как и для меня.
Недавно я изучал один очень интересный ГОСТ:
ГОСТ Р 50571.5.52-2011 Электроустановки низковольтные. Часть 5-52. Выбор и монтаж электрооборудования. Электропроводки.
Советую почитать данный документ, т.к. там много чего полезного.
В этом документе приводится формула для расчета потери напряжения и указано:
р — удельное сопротивление проводников в нормальных условиях, взятое равным удельному сопротивлению при температуре в нормальных условиях, то есть 1,25 удельного сопротивления при 20 °С, или 0,0225 Ом · мм2/м для меди и 0,036 Ом · мм2/м для алюминия;
Я ничего не понял=) Видимо, при расчетах потери напряжения да при расчете токов короткого замыкания мы должны учитывать сопротивление проводников, как при нормальных условиях.
Стоит заметить, что все табличные значения приводят при температуре 20 градусов.
А какие нормальные условия? Я думал 30 градусов Цельсия.
Давайте вспомним физику и посчитаем, при какой температуре сопротивление меди (алюминия) увеличится в 1,25 раза.
R1=R0
R0 – сопротивление при 20 градусах Цельсия;
R1 — сопротивление при Т1 градусах Цельсия;
Т0 — 20 градусов Цельсия;
α=0,004 на градус Цельсия (у меди и алюминия почти одинаковые);
R1/R0=1,25
1,25=1+α (Т1-Т0)
Т1=(1,25-1)/ α+Т0=(1,25-1)/0,004+20=82,5 градусов Цельсия.
Как видим, это совсем не 30 градусов. По всей видимости, все расчеты нужно выполнять при максимально допустимых температурах кабелей. Максимальная рабочая температура кабеля 70-90 градусов в зависимости от типа изоляции.
Честно говоря, я с этим не согласен, т.к. данная температура соответствует практически аварийному режиму электроустановки.
В своих программах я заложил удельное сопротивление меди – 0,0175 Ом · мм2/м, а для алюминия – 0,028 Ом · мм2/м.
Если помните, я писал, что в моей программе по расчету токов короткого замыкания получается результат примерно на 30% меньше от табличных значений. Там сопротивление петли фаза-ноль рассчитывается автоматически. Я пытался найти ошибку, но так и не смог. По всей видимости, неточность расчета заключается в удельном сопротивлении, которое используется в программе. А удельное сопротивление может задать каждый, поэтому вопросов к программе не должно быть, если указать удельные сопротивления из выше приведенного документа.
А вот в программы по расчету потерь напряжения мне скорее всего придется внести изменения. Это приведет к увеличению на 25% результатов расчета. Хотя в программе ЭЛЕКТРИК, потери напряжения получается практически такие, как у меня.
Если вы впервые попали на этот блог, то ознакомиться со всеми моими программами можно на странице МОИ ПРОГРАММЫ.
Как вы считаете, при какой температуре нужно считать потери напряжения: при 30 или 70-90 градусах? Есть ли нормативные документы, которые ответят на этот вопрос?
Советую почитать:
Расчет объема монтажной пены для герметизации труб с кабелем
Расчет мощности жилого дома для ТУ
Расчет категории помещения по взрывопожарной и пожарной опасности
Программа для расчета нагрузок жилых зданий
Соотношение тока и сечения
Чтобы понять, как работает электрический кабель, необходимо вспомнить обычную водопроводную трубу. Чем больше ее диаметр, тем больше воды через нее будет проходить. То же самое и с проводами. Чем больше их площадь, тем большей силы ток, через них пройдет. При этом кабель не будет перегреваться, что является самым важным требованием правил пожарной безопасности.
Поэтому связка сечение – ток является основным критерием, который используется в подборе электрических проводов в разводке. Поэтому вам необходимо сначала разобраться, сколько бытовых приборов и какой общей мощности будет подключены к каждому шлейфу. К примеру, на кухне обязательно устанавливается холодильник, микроволновка, кофемолка и кофеварка, электрочайник иногда посудомоечная машина. То есть, все эти прибору могут в один момент быть включены одновременно. Поэтому в расчетах и используется суммарная мощность помещения.
Узнать потребляемую мощность каждого прибора можно из паспорта изделия или на бирке. Для примера обозначим некоторые из них:
- Чайник – 1-2 кВт.
- Микроволновка и мясорубка 1,5-2,2 кВт.
- Кофемолка и кофеварка – 0,5-1,5 кВт.
- Холодильник 0,8 кВт.
Узнав мощность, которая будет действовать на проводку, можно подобрать ее сечение из таблицы. Не будем рассматривать все показатели данной таблицы, покажем те, которые преобладают в быту.
- Сила тока 16 А, сечение кабеля 2,7 мм², диаметр провода 1,87 мм.
- 25 А – 4,2 – 2,32.
- 32 А – 5,3 – 2.6.
- 40 А – 6,7 – 2,92.
Но тут есть нюансы. К примеру, вам необходимо подключить стиральную машину. Специалисты рекомендуют к таким мощным приборам из распределительного щита проводить отдельный контур, запитав его на отдельный автомат. Так вот потребляемая мощность стиральной машины – 4 кВт, а это ток силой 18 А. В таблице ПУЭ этого показателя нет, поэтому необходимо доводить его до ближайшего большего, а это 20 А, к которому подходит контур сечением 3,3 мм² диаметром 2,05 мм. Опять-таки, провода с таким значением нет, значит, доводим и его до ближайшего большего. Это 4 мм². Кстати, таблица стандартных размеров электрических проводов также есть в интернете в свободном доступе.
Трехфазное подключение
Трехфазная сеть – это три провода, по которым и движется ток. Соответственно нагрузка прибора, подключенного на три фазы, уменьшается в три раза на каждой фазе. Поэтому для каждой фазы можно использовать кабель меньшего сечения. Здесь тоже соотношение – в три раза. То есть, если сечение кабеля в однофазной сети равно 4 мм², то для трехфазной можно брать 4/1,75=2,3 мм². Переводим в стандартный больший размер по таблице ПУЭ – 2,5 мм².
Как правильно произвести расчет по другим показателям
При прокладке электрокоммуникаций стоит понимать зависимость сечения от силы тока, длины материала, напряжению и нагрузке. На этих критериях необходимо основывать выбор.
По току
Величина тока при прохождении через проводник в условиях комнатной температуры зависит от ширины, длины, удельного сопротивления и температурного режима. В квартирах и домах чаще всего используют медный провод, поэтому при подборе сечения ориентируются на данные ПУЭ.
Сечение, мм2 | Ток, А по типу прокладки | |||||
Открытый | Одна труба | |||||
2 одножильных | 3 одножильных | 4 одножильных | 1 двухжильный | 1 трехжильный | ||
0,5 | 11 | – | – | – | – | – |
0,75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 21 |
2,5 | 30 | 27 | 25 | 25 | 25 | 24 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 22 | 27 |
По длине
В случае высокого токопотребления стоит выбирать короткий материал. Излишняя длина приведет к потере качества электропередачи – напряжение на отдельных участках будет «прыгать». Зависимость сечения от расстояния до точки запитки прописана в нормативной таблице.
Мощность, Вт | Ток, А | 1,5 мм2 | 2,5 мм2 | 4 мм2 | 6 мм2 |
500 | 2,5 | 100 м | 165 м | 265 м | 395 м |
1000 | 4,6 м | 30 м | 84 м | 135 м | 200 м |
1500 | 6,8 м | 33 м | 57 м | 90 м | 130 м |
2000 | 9 м | 25 с | 43 м | 68 м | 100 м |
2500 | 11,5 м | 20 м | 34 м | 54 м | 80 м |
3000 | 13,5 м | 17 м | 29 м | 45 м | 66 м |
3500 | 16 м | 14 м | 24 м | 39 м | 56 м |
4000 | 18 м | – | 21 м | 34 м | 49 м |
4500 | 20 м | – | 19 м | 30 м | 44 м |
По нагрузке
Для трехфазной сети свойственно тройное увеличение момента нагрузки. Двойной скачок нагрузки в режиме симметричного напряжения происходит, поскольку ток нулевого проводника равняется нулю. Точные данные можно узнать из таблицы.
Разность напряжения, % | Момент нагрузки по сечению провода | |||
1,5 | 2,5 | 4 | 6 | |
1 | 108 | 180 | 288 | 432 |
2 | 216 | 360 | 576 | 864 |
3 | 324 | 540 | 864 | 1296 |
4 | 432 | 720 | 1152 | 1728 |
5 | 540 | 900 | 1440 | 2160 |
Трёхфазная электрическая сеть
Расчет сечения провода по нагрузке предусматривает коэффициент одновременности 0,75 и может осуществляться математически:
- Составляется список домашних электроприборов.
- На основании документации или таблицы указывается номинальная мощность.
- Устанавливается возможность эксплуатации техники при единовременной нагрузке.
- Рассчитывается поправочный коэффициент по времени использования за сутки в процентном отношении к 24 ч для каждого из приборов.
- Номинальная мощность оборудования умножается на поправочный коэффициент.
- Все данные суммируются.
- Находится значение в таблице и к нему прибавляется еще 15 %.
По напряжению
Программа для расчета падения напряжения на кабеле
Если планируется укладка кабеля на большое расстояние, принимаются во внимание риски падения напряжения. Показатель находится под влиянием:
- длины провода – при увеличении напряжение падает;
- площадь поперечного сечения – при увеличении снижается падение напряжения;
- удельное сопротивление проводника – стандартный размер 1 мм2/1 м.
Падение напряжения равно ток, умноженный на сопротивление. Показатель рассчитывается следующим образом:
- Вычисляется ток по формуле I=P/(U*cosф). Величина cosф для бытовой электросети – 1.
- На основании таблиц ПУЭ устанавливается сечение провода по току.
- Рассчитывается общее сопротивление проводника. Используется формула Rо=ρ*l/S, где ρ – удельное сопротивление материала, l – длина проводника, S – площадь поперечного сечения. Общее значение сопротивления при прохождении тока к потребителю и обратно увеличивается на 2.
- Находится падение напряжения по формуле ΔU=I*R.
- Вычисляется процент падения напряжения ΔU/U.
Если результат больше 5 %, подбирается кабель с большим сечением.
По плотности тока
Медные материалы с жилой сечением 1 мм2 имеют среднюю плотность тока 6-10 А. Токи данной величины протекают без перегрева или обгорания изоляции. Согласно ПУЭ, дополнительно на защиту оболочек нужно прибавить 40 %.
Предел в 6 А обеспечивает эксплуатацию проводки без привязки к времени. Верхний предел в 10 А указывает допустимую кратковременную нагрузку. При увеличении силы тока до 12 А повышается и его плотность, что приводит к обгоранию изоляции.
По маркировке проводов
Кабель ВВГ-нг
Квартирная проводка монтируется при помощи кабелей ВВГ-нг и ВВГ. Первый не подвергается возгораниям, предназначен для внутренних, земельных и наружных работ. Материал выпускается с 2-4 жилами, с сечением каждой от 1,5 до 35 мм2.
Специалисты считают, что для точечного освещения хватит кабеля с сечением 0, 5 мм², для люстры – 1,5 мм², розеточных устройств – 2,5 мм².
Чем отличается кабель от провода
Прежде чем перейти к основному содержимому, нам необходимо понять, что же мы все-таки хотим рассчитать, сечение провода или кабеля, в чем различия одного от другого!? Несмотря на то, что обыватель применяет эти два слова как синонимы, подразумевая под этим что-то свое, но если быть дотошными, то разница все же имеется.
Так провод это одна токопроводящая жила, будь то моножила или набор проводников, изолированная в диэлектрик, в оболочку. А вот кабель, это уже несколько таких проводов, объединенных в единое целое, в своей защитной и изоляционной оболочке. Для того, чтобы вам было лучше понятно, что к чему, взгляните на картинку.
Так вот, теперь мы в курсе, что рассчитывать нам необходимо именно сечение провода, то есть одного токопроводящего элемента, а второй будет уже уходить от нагрузки, обратно к питанию.
Однако мы порой и сами забываемся не лучше Вашего, так что если вы нас подловите на том, что где-то все же встретится слово кабель, то не сочтите уж за невежество, стереотипы делают свое дело.
1.3.31
Выбор экономических сечений проводов воздушных и
жил кабельных линий, имеющих промежуточные отборы мощности, следует производить
для каждого из участков, исходя из соответствующих расчетных токов участков.
При этом для соседних участков допускается принимать одинаковое сечение
провода, соответствующее экономическому для наиболее протяженного участка, если
разница между значениями экономического сечения для этих участков находится в
пределах одной ступени по шкале стандартных сечений. Сечения проводов на
ответвлениях длиной до 1 км принимаются такими же, как на ВЛ, от которой
производится ответвление. При большей длине ответвления экономическое сечение
определяется по расчетной нагрузке этого ответвления.
Расчет по току с применением дополнительных параметров
При расчете сечения на основе тока с использованием таблицы ПУЭ можно пользоваться и дополнительными параметрами.
Например, есть возможность учитывать диаметр жилы. Поэтому при определении сечения жилы применяют специальное оборудование под названием микрометр. На основе его данных определяется толщина каждой жилы. Потом с использованием значений ранее полученных токов и специальной таблицы производится окончательный выбор величины сечения жилы провода.
Если же кабель состоит из нескольких жил, то следует произвести замер одной из них и посчитать её сечение. После этого для нахождения окончательного значения толщины, показатель, полученный для одной жилы, умножается на их количество в проводе.
Полученное таким образом с использованием расчетов и таблицы ПУЭ значение сечения кабеля позволит создать в доме или квартире проводку, которая будет служить хозяевам на протяжении довольно долгого периода времени без возникновения аварийных или внештатных ситуаций.
1.3.27
Увеличение количества линий или цепей сверх
необходимого по условиям надежности электроснабжения в целях удовлетворения
экономической плотности тока производится на основе технико-экономического
расчета. При этом во избежание увеличения количество линий или цепей
допускается двукратное превышение нормированных значений, приведенных в табл.
1.3.36.
Таблица 1.3.36. Экономическая плотность тока
Проводники |
Экономическая плотность тока, А/мм2, при числе часов использования |
||
более 1000 до 3000 | более 3000 до 5000 | более 5000 | |
Неизолированные провода и шины: |
|||
медные | 2,5 | 2,1 | 1,8 |
алюминиевые | 1,3 | 1,1 | 1,0 |
Кабели с бумажной и провода с |
|||
медными | 3,0 | 2,5 | 2,0 |
алюминиевыми | 1,6 | 1,4 | 1,2 |
Кабели с резиновой и |
|||
медными | 3,5 | 3,1 | 2,7 |
алюминиевыми | 1,9 | 1,7 | 1,6 |
В технико-экономических расчетах следует учитывать все вложения в дополнительную линию, включая оборудование и камеры распределительных устройств на обоих концах линий. Следует также проверять целесообразность повышения напряжения линии.
Данными указаниями следует руководствоваться также при
замене существующих проводов проводами большего сечения или при прокладке
дополнительных линий для обеспечения экономической плотности тока при росте
нагрузки. В этих случаях должна учитываться также полная стоимость всех работ
по демонтажу и монтажу оборудования линии, включая стоимость аппаратов и
материалов.
Порядок сдачи в эксплуатацию
После завершения монтажа ВЛ 0,4 кВ, сдавая объект в эксплуатацию производитель работ обязан:
- Предоставить пакет обязательных документов, состав которого определяется действующими нормативными требованиями.
- Провести приёмосдаточные испытания на соответствие требованиям ПУЭ.
В ходе испытаний производятся:
- Контроль параметров соединительной и контактной арматуры (выборочно, в пределах 2 – 15%), включающий наружный осмотр и измерение электрического сопротивления контакта.
- Замеры сопротивления изоляции на всех участках (при проверке мегомметром на 1000 В показания не должны быть не ниже 0,5 МОм) и испытания высоким напряжением.
- Проверка маркировки жил в зажимах (соединительных и ответвительных).
- Контроль заземляющих устройств, в ходе которого производится визуальный осмотр на предмет оценки качества резьбовых соединений и сварных швов и измерение сопротивления заземлителей на разных участках. По результатам замеров вычисляется ток однофазного замыкания.
- Проверка габаритов ВЛИ и стрел провеса СИП.
При обнаружении в ходе проводимых испытаний отклонений от строительных требований, объект не должен приниматься в эксплуатацию.
Расчет на онлайн калькуляторе
Многочисленные онлайн-калькуляторы предлагают автоматический расчет сечения. Как рассчитать сечение провода на таком калькуляторе? Популярный алгоритм предлагает ввести несколько известных характеристик: вид тока (переменный или постоянный), материал проводника (Cu или Al), суммарную мощность подключаемой нагрузки (в кВт), номинальное напряжение
Также для систем переменного тока при расчете сечения важно знать тип снабжения — однофазный или трехфазный
Способ прокладки кабеля также влияет на максимально-допустимую нагрузку из-за разных условий теплоотвода (открытый монтаж способствует лучшему охлаждению кабеля по сравнению с кабель-каналом, а в земле проводник греется меньше всего и способен пропускать более высокие значения длительного номинального тока).
Количество нагруженных проводов в пучке будет различным для постоянного и переменного тока, а также для однофазных и трехфазных систем переменного тока. Так, все провода считаются нагруженными в сети постоянного тока, а с переменным дело обстоит иначе:
- в 1-фазной сети нагружены фазный и нулевой провод;
- в 3-фазной — только фазные (не учитываются нулевой защитный и рабочий проводники).
То есть, примеры нагруженных проводов в пучке при расчете могут быть такими: два, три или четыре провода в раздельной изоляции, два или три провода в общей изоляции и т. д.
1.3.28
Проверке по экономической плотности тока не
подлежат:
сети промышленных предприятий и сооружений напряжением до 1
кВ при числе часов использования максимума нагрузки предприятий до 4000-5000;
ответвления к отдельным электроприемникам напряжением до 1
кВ, а также осветительные сети промышленных предприятий, жилых и общественных
зданий;
сборные шины электроустановок и ошиновка в пределах
открытых и закрытых распределительных устройств всех напряжений;
проводники, идущие к резисторам, пусковым реостатам и т.
п.;
сети временных сооружений, а также устройства со сроком
службы 3-5 лет.
Допустимый длительный ток для трехжильных кабелей на напряжение 6 кВ с медными и алюминиевыми жилами с пластмассовой изоляцией, прокладываемых в земле и в воздухе
Таблица 3.40
Сечение,
мм2 |
Токовые нагрузки, А | |||
В земле | В воздухе | |||
Поливинил-хлорид и полиэтилен | Вулканизированный полиэтилен | Поливинилхло-
рид и полиэтилен |
Вулканизированный
полиэтилен |
|
10 | 70/55 | 79/62 | 65/50 | 73/57 |
]6 | 92/70 | 104/79 | 85/65 | 96/73 |
25 | 122/90 | 138/102 | 110/85 | 124/96 |
35 | 147/110 | 166/124 | 135/105 | 153/119 |
50 | 175/130 | 198/147 | 165/125 | 186/141 |
70 | 215/160 | 243/181 | 210/155 | 237/175 |
95 | 260/195 | 294/220 | 255/190 | 288/215 |
120 | 295/220 | 333/249 | 300/220 | 339/249 |
150 | 335/250 | 379/283 | 335/250 | 379/283 |
185 | 380/285 | 429/322 | 385/290 | 435/328 |
240 | 445/335 | 503/379 | 460/345 |
Примечания: в числителе данные для кабелей с медными, знаменателе — с алюминиевыми жилами.
Мощности для кабелей, проложенных в воде, определяются умножением показателей табл. 3.40 на коэффициент 1,3.
Включение КТП-1000 в работу
Подготовить силовой трансформатор к включению согласно инструкции по эксплуатации трансформатора. Установить пререключатель обмоток ВН трансформатора в нулевое положение.
Запереть дверь камеры трансформатора и двери между РУ различного напряжения на замок.
Предупредить персонал о подаче напряжения, вывесить, если необходимо, плакаты безопасности.
Проверить наличие и исправность средств пожаротушения.
Включение КТП-1000 на рабочее напряжение производится по наряду после выполнения организационных и технических мероприятий, указанных в настоящем руководстве, и приемки КТПН в эксплуатацию комиссией потребителя с участием представителей Ростехнадзора и местной энергоснабжающей организации.
Последовательность операций при включении КТП-1000 в сеть:
- Установить рукоятки всех выключателей и разъединителей в положение «отключено»;
- Снять переносные заземления и проверить ошиновку на отстуствие посторонних предметов;
- Закрыть двери камеры трансформатора на замки;
- Закрыть дверь между РУНН и РУВН (если имеется);
- Включить линейный разъединитель ВЛ (подать напряжение на питающий кабель);
- В РУВН включить вводной выключатель и шинный разъединитель ячейки ввода;
- Включить выключатель ячейки силового трансформатора;
- Осмотреть РУВН и трансформатор, не проникая за ограждающие конструкции, на предмет отсутствия искрений и посторонних шумов;
- Закрыть наружные двери РУВН и трансформаторного отсека;
- В РУНН включить шинный разъединитель и вводной автоматический выключатель (рубильник) ячейки ввода, проверить величину напряжения заведомо исправным переносным измерительным прибором, сверить по измерительным приборам, установленным в КТП-1000;
- Включить шинные разъединители и автоматические выключатели отходящих линий 0,4 кВ;
Конструктивное исполнение
КТП-1000 представляет собой сборно-сварную металлоконструкцию. Корпус подстанции выполнен с каркасом из стальных профилей, имеющих стойкое покрытие, обеспечивающее повышенную коррозийную стойкость и современный дизай. Корпус подстанции обшит оцинкованными листами толщиной 1,2 мм.
Возможно изготовление КТП-1000 «северного» исполнения.
Корпус КТП-1000 как правило, представляет собой:
- распределительное устройство высокого напряжения РУВН-6(10) кВ с ячейками типа КСО,
- отсек силового трансформатора,
- распределительного устройства низкого напряжения РУНН-0,4 кВ с ячейками типа ЩО.
Компоновка КТП-1000 и ее габариты — зависят от схемы электрических соединений, количества ячеек и трансформаторов. Отсеки КТП-1000 разделены металлическими перегородками, и имеют отдельные двери, запирающиеся замками.
Для вентиляции и охлаждения установленных внутри отсека аппаратов — двери имеют проемы с жалюзи. В отдельных случаях камера трансформатора может быть снабжена осевым вытяжным вентилятором.
В РУВН и РУНН подстанции ячейки располагаются в один ряд с образованием коридора обслуживания. Модули КТП-1000 комплектуются приборами освещения, отопления и вентиляции с готовой разводкой проводов, что позволяет выполнять монтаж подстанции в более короткие сроки.
Высоковольтный ввод, по заказу, выполняется воздушным, с установкой на крыше отсека проходных изоляторов с ОПН или кабельным, через пол или стены. Низковольтные выводы могут быть кабельными или воздушными, с установокой на крыше КТП-1000 рамы с изоляторами для ВЛ-0,4 кВ.
Основание КТП-1000 представляет цельносварную конструкцию из профилей, которая имеет сплошной или просечной настил с маслоприемным отверстием для аварийного сброса масла из трансформатора и отверстиями для ввода и вывода кабелей. Прочность основания трансформаторного модуля рассчитана на установку одного силового трансформатора мощностью до 2500 кВА.
РУВН на КТП мощностью свыше 250 кВА может выполняться, на базе камер серии KCO-3хх-КН, а свыше 1000 кВА могут быть выполнены на базе КСО-2хх-КН с вакуумными выключателями.
РУНН, комплектуются панелями ЩО-70-КН как с автоматическими выключателями на вводе и отходящих линиях, так и с рубильниками и предохранителями.
В РУНН может быть предусмотрена возможность установки:
- учета электроэнергии;
- автоматического или местного управления уличным освещением;
- автоматических выключателей для собственных нужд (освещения, отопления и вентиляции).
Присоединение КТП-1000 к воздушной линии ВЛ-6(10) кВ, как правило, осуществляется через трехполюсный линейный разъединитель типа РЛНД-10 или аналогичный ему.
В качестве силовых трансформаторов применяются трансформаторы как с сухой так и с масляной основной изоляцией обмоток.
Перед отправкой все модули собираются, прокладываются все межмодульные связи, производится маркировка и комплексное тестирование электрооборудования. По заказу в КТП-1000 может выполняется: электроосвещение; электроотопление; естественная или принудительная вентиляция; сплит-система кондиционирования и пожарная сигнализация.
Как рассчитать сечения кабеля по мощности
При достаточном значении сечения кабеля электрический ток будет проходить до потребителя, не вызывая нагрева. Почему происходит нагрев? Постараемся объяснить максимально доступно. К примеру, в розетку включён чайник потребляемой мощностью 2 киловатта, но идущий к розетке провод может передать для него ток мощностью только 1 киловатт. Пропускная способность кабеля связана с сопротивлением проводника — чем оно больше, тем меньший ток может передаваться по проводу. В результате высокого сопротивления в проводке и происходит нагрев кабеля, постепенно разрушающий изоляцию.
При соответствующем сечении электрический ток доходит до потребителя в полном объёме, и нагревание провода не происходит. Поэтому, проектируя электропроводку, следует учитывать потребляемую мощность каждого электрического прибора. Это значение можно узнать из технического паспорта на электроприбор или из наклеенной на нём этикетки. Суммируя максимальные значения и используя нехитрую формулу:
и получаем значение общей силы тока.
Pn обозначает указанную в паспорте мощность электроприбора, 220 – номинальный вольтаж.
Для трехфазной системы (380 В) формула выглядит так:
Полученное значение I измеряется в Амперах, и на основании него и подбирается соответствующее сечение кабеля.
Известно, что пропускная способность медного кабеля составляет 10 А/мм, для алюминиевого кабеля значение пропускной способности составляет 8 А/мм.
Для того чтоб рассчитать сечение кабеля нужно величину тока разделить на 8 или 10, в зависимости от вида кабеля. Полученный результат и будет размером сечения кабеля.
Например рассчитаем величину сечения кабеля для подключения стиральной машины, потребляемая мощность которой составляет 2400 Вт.
I=2400 Вт/220 В=10,91 А, округлив получаем 11 А.
Дальше, чтоб увеличить запас прочности, согласно правилу “пяти ампер” к полученному значению силы тока нужно прибавить еще 5 А:
11 А+5 А=16 А.
Если учитывать, что в квартирах используют трехжильные кабеля и посмотреть по таблице, то к 16 А близкое значение 19 А, поэтому для установки стиральной машины потребуется провод, сечение которого не меньше 2 мм².
Таблица сечения кабеля относительно величины силы тока
Сечение токо-прово-дящей жилы(мм2) Ток(А), для проводов, проложенных
Откры- то | в одной трубе | |||||
двух одно- жильных | трех одно- жильных | четырех одно- жильных | одного двух- жильного | одного трех- жильного | ||
0,5 | 11 | – | – | – | – | – |
0,75 | 15 | – | – | – | – | – |
1 | 17 | 16 | 15 | 14 | 15 | 14 |
1,2 | 20 | 18 | 16 | 15 | 16 | 14,5 |
1,5 | 23 | 19 | 17 | 16 | 18 | 15 |
2 | 26 | 24 | 22 | 20 | 23 | 19 |
2,5 | 30 | 27 | 25 | 25 | 25 | 21 |
3 | 34 | 32 | 28 | 26 | 28 | 24 |
4 | 41 | 38 | 35 | 30 | 32 | 27 |
5 | 46 | 42 | 39 | 34 | 37 | 31 |
6 | 50 | 46 | 42 | 40 | 40 | 34 |
8 | 62 | 54 | 51 | 46 | 48 | 43 |
10 | 80 | 70 | 60 | 50 | 55 | 50 |
16 | 100 | 85 | 80 | 75 | 80 | 70 |
25 | 140 | 115 | 100 | 90 | 100 | 85 |
35 | 170 | 135 | 125 | 115 | 125 | 100 |
50 | 215 | 185 | 170 | 150 | 160 | 135 |
70 | 270 | 225 | 210 | 185 | 195 | 175 |
95 | 330 | 275 | 255 | 225 | 245 | 215 |
120 | 385 | 315 | 290 | 260 | 295 | 250 |
150 | 440 | 360 | 330 | – | – | – |
185 | 510 | – | – | – | – | – |
240 | 605 | – | – | – | – | – |
300 | 695 | – | – | – | – | – |
400 | 830 | – | – | – | – | – |
Что такое УЗО в электрике: разновидности, принцип работы
Подключение двухклавишного выключателя: схемы, советы, инструкция
Удельное сопротивление кабеля таблица
Главная > Теория > Удельное сопротивление меди
Формула вычисления сопротивления проводника
Что такое электрический ток
На разных полюсах аккумулятора или другого источника тока есть разноимённые носители электрического заряда. Если их соединить с проводником, носители заряда начинают движение от одного полюса источника напряжения к другому. Этими носителями в жидкости являются ионы, а в металлах – свободные электроны.
Определение. Электрический ток – это направленное движение заряженных частиц.
Удельное сопротивление
Удельное электрическое сопротивление – это величина, определяющая электросопротивление эталонного образца материала. Для обозначения этой величины используется греческая буква «р». Формула для расчета:
p=(R*S)/l.
Эта величина измеряется в Ом*м. Найти её можно в справочниках, в таблицах удельного сопротивления или в сети интернет.
Свободные электроны по металлу двигаются внутри кристаллической решётки. На сопротивление этому движению и удельное сопротивление проводника влияют три фактора:
- Материал. У разных металлов различная плотность атомов и количество свободных электронов;
- Примеси. В чистых металлах кристаллическая решётка более упорядоченная, поэтому сопротивление ниже, чем в сплавах;
- Температура. Атомы не находятся на своих местах неподвижно, а колеблются. Чем выше температура, тем больше амплитуда колебаний, создающая помехи движению электронов, и выше сопротивление.
На следующем рисунке можно увидеть таблицу удельного сопротивления металлов.
Удельное сопротивление металлов
Интересно. Есть сплавы, электросопротивление которых падает при нагреве или не меняется.
Проводимость и электросопротивление
Так как размеры кабелей измеряются в метрах (длина) и мм² (сечение), то удельное электрическое сопротивление имеет размерность Ом·мм²/м. Зная размеры кабеля, его сопротивление рассчитывается по формуле:
R=(p*l)/S.
Кроме электросопротивления, в некоторых формулах используется понятие «проводимость». Это величина, обратная сопротивлению. Обозначается она «g» и рассчитывается по формуле:
g=1/R.
Проводимость жидкостей
Проводимость жидкостей отличается от проводимости металлов. Носителями зарядов в них являются ионы. Их количество и электропроводность растут при нагревании, поэтому мощность электродного котла растёт при нагреве от 20 до 100 градусов в несколько раз.
Интересно. Дистиллированная вода является изолятором. Проводимость ей придают растворенные примеси.
Электросопротивление проводов
Самые распространенные металлы для изготовления проводов – медь и алюминий. Сопротивление алюминия выше, но он дешевле меди. Удельное сопротивление меди ниже, поэтому сечение проводов можно выбрать меньше. Кроме того, она прочнее, и из этого металла изготавливаются гибкие многожильные провода.
В следующей таблице показывается удельное электросопротивление металлов при 20 градусах. Для того чтобы определить его при других температурах, значение из таблицы необходимо умножить на поправочный коэффициент, различный для каждого металла. Узнать этот коэффициент можно из соответствующих справочников или при помощи онлайн-калькулятора.
Сопротивление проводов
Выбор сечения кабеля
Поскольку у провода есть сопротивление, при прохождении по нему электрического тока выделяется тепло, и происходит падение напряжения. Оба этих фактора необходимо учитывать при выборе сечения кабелей.
Выбор по допустимому нагреву
При протекании тока в проводе выделяется энергия. Её количество можно рассчитать по формуле электрической мощности:
P=I²*R.
В медном проводе сечением 2,5мм² и длиной 10 метров R=10*0.0074=0.074Ом. При токе 30А Р=30²*0,074=66Вт.
Эта мощность нагревает токопроводящую жилу и сам кабель. Температура, до которой он нагревается, зависит от условий прокладки, числа жил в кабеле и других факторов, а допустимая температура – от материала изоляции. Медь обладает большей проводимостью, поэтому меньше выделяемая мощность и необходимое сечение. Определяется оно по специальным таблицам или при помощи онлайн-калькулятора.
Таблица выбора сечения провода по допустимому нагреву
Выбор сечения провода исходя из количества потребителей
О чем еще хотелось сказать, так это о том, что лучше использовать несколько независимых линий питания для каждого из помещений в комнате или квартире. Тем самым вы не будете применять провод с сечением 10 мм 2 для всей квартиры, проброшенный во все комнаты, от которого идут отводы.
Такой провод будет приходить на вводный автомат, а затем от него, в соответствии с мощностью потребляемой нагрузки будут разведены выбранные сечения проводов, для каждого из помещений.
Типовая принципиальная схема электропроводки для квартиры или дома с электрической плитой (с указанием сечения кабеля для электроприборов)