Основы дизайна: правило золотого сечения

Что такое золотое сечение и как его понимать

Часто мы сталкиваемся с домами, предметами, строениями, растениями, которые нас чем-то завораживают. Люди издавна пытались понять, почему одно нам кажется красивым, другое нет, искали закономерности. И вроде нашли. Это некоторое соотношение частей, которое назвали золотым сечением.

О том, кто и когда придумал золотое сечение никто не знает точно. Кто-то приписывает открытие Пифагору, но первое упоминание нашли еще в «Началах» Евклида, а жил он в 3 веке до нашей эры. Так что находка явно давняя. Именно по этому принципу построены древнегреческие и римские храмы. Конечно, это могут быть совпадения, но очень уж странные и очень их много. Так что, скорее всего, они были в курсе идеальных пропорций.

Сохранившиеся постройки древности тоже подчинены правилу золотого сечения

Совершенно точно то, что Леонардо да Винчи искал подтверждение этому принципу в строении человеческого тела. И, что самое интересное, нашел. Те лица и тела, которые кажутся нам красивыми, имеют пропорции, которые как раз и подчиняются закону золотого сечения.

Формальное определение звучит и просто, и сложно. Его связывают с двумя разными по размеру отрезками. Звучит этот принцип примерно так: если отрезок разделить на две неравные части, то это деление будет пропорциональным, если большая часть отрезка относится к целому так же, как и меньшая часть к большему. Будет понятнее, если посмотреть на иллюстрацию и формулу.

Принцип и формула золотого сечения

На рисунке целый отрезок разделен так, что если а разделить на b, получим 1,1618, та же цифра получается, если целый отрезок разделить на большую часть — a. Это число и есть воплощением идеальной пропорции. Теперь, если посмотрите на картинку с Парфеноном, пропорции этого строения также подчиняются указанному соотношению.

Ту же закономерность можно представить в виде процентов. Может, кому-то так проще. Для того, чтобы деление целого было пропорциональным, части должны составлять 62% и 38%. Возможно, так будет проще запомнить.

Последовательность Фибоначчи — не только математическая формула

Эту закономерность развил дальше математик Фибоначчи. Он разработал числовую последовательность, элементы которой, начиная с девятого, подчиняются тому же закону. Графическое изображение этой последовательности — спираль. Если присмотреться, и в природе, и в архитектуре, и в человеческом теле пропорции красоты присутствуют.

Вся правда о древних строителях

Интуитивно или сознательно великие архитекторы строили здания с учётом этих пропорций? Античные математики знали о золотом сечении со времён Пифагора. Находятся всё новые подтверждения его применения в архитектурных пропорциях. Однако не найти ни одной древней записи с прямой рекомендацией использовать “божественную пропорцию”. Нет таковой и у Витрувия (I век до н. э.), написавшего «Десять книг об архитектуре», в которых он рассматривал пропорциональности в том числе. Странный факт, не правда ли?

Может все выше приведённые исследования являются подгонкой под известный результат? Не так сложно выбрать из множества архитектурных элементов те, которые подтверждают гипотезу, т. к. абсолютной точности никто не требует. Логично задуматься над вопросом: «Что если греки НЕ применяли золотое сечение?»

Собственно говоря, и для Луки Пачоли, написавшего в 1509 году труд «Божественная пропорция», не столь важно было его прикладное значение. Важно было обосновать её мистическую природу

А применять его осознанно стали только с момента издания книги.

Золотое сечение в ландшафтном дизайне — как использовать

Применение методов «божественных пропорций» в дизайне приусадебных участков, городских парков также обосновано. Любимое соотношение у большинства дизайнеров – 8-5-3, так обычно относится общее пространство к площади газонов и садовых дорожек. Удачным будет и симметричное решение, где центральная и меньшая части равны, а каждая из боковых составляет половину большей. Яркий пример тому – звезда, вписанная в правильный пятиугольник, в котором соотношение диагонали и сторону соответствует «золоту» в пропорциях.

Существуют некоторые другие параметры:

  • линейная, воздушная перспектива – это визуальное изменение размеров, четкости в случае увеличения расстояния. Кажется, что параллельные линии сходятся в одну – таким образом, постепенно сужая дорожку, создают впечатление большего пространства, чем есть;
  • соподчиненность, единство форм – выделение акцентов, соотношение высоты растений, садовых скульптур, хозяйственных построек;
  • равновесие композиционных решений – выделяется значимый центр, а по отношению к нему размещают все остальные объекты, стараясь не перегружать тот или иной сектор сада.

Ряд Фибоначчи

С историей золотого сечения связано и имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи).

Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами.

В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Одна из задач гласила «Сколько пар кроликов в один год от одной пары родится».

Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:, который удовлетворяет Золотому сечению

0 — 0 — 1 — 2 — 3 — 5 — 8 — 13 — 21 — 34  и т.д.

Сумма двух предшествующих чисел равна последующему в ряду числу. Отношение соседних чисел в ряду приближено к Золотому сечению.

Этот ряд чисел называют рядом Фибоначчи. Воспользовавшись рядом Фибоначчи мы можем получить пропорцию для деления.предмета на гармоничные части.

Например, для отрезка длиной 5 идеальной пропорцией будет деление его на части равные 2 и 3, для отрезка 8 это 3 и 5 и т.д.

Просто о сложном: что это такое – правило золотого сечения

Золотое сечение –это правило общей пропорции, которая создает универсальную композицию. Математики называют её формулой божественной гармонии или асимметричной симметрией.

Признано считать, что ЗС пришло к нам еще с древней Греции, но есть и такое мнение, что его греки подсмотрели у египтян. Если проанализировать архитектуру Египта того времени, можно чётко проследить соблюдение математической гармонии. Необычные свойства числовой зависимости стали причиной мистического отношения к золотому сечению:

  • практически все живые организмы можно привести к принципу числовой зависимости. Например, тело человека, количество семечек в подсолнухе, структуру ДНК, произведения искусства и вирусную бактерию;
  • данная зависимость чисел характерна только для биологических существ и кристаллов, все остальные неживые объекты природы крайне редко обладают золотой пропорцией;
  • именно математическая пропорция в строении биологических объектов оказалась оптимальной для выживания.

Идеальный пример ЗС в природе — раковина морского моллюска

Идеальный треугольник и пентаграмма

Идеальным называют равнобедренный треугольник, основание которого относится к длине стороны как 1/3. То есть, снова-таки соблюдается золотое сечение. Начертить треугольник с идеальным соотношением сторон несложно. Удобнее циркулем, но можно обойтись и линейкой.

Золотой треугольник, правило его построения и применение в создании интерьера, например

Построение такое. На прямой от точки A трижды откладываем отрезок произвольной длины. Эту длину обозначим O. Получаем точку B. Через нее проводим прямую, перпендикулярную отрезку AB. На этой линии в обе стороны от точки B откладываем величину O. Получаем две точки d и d1. Соединяем их с точкой A. Вот и получили треугольник, стороны которого относятся как 1,62. Проверить это можно, если отложить при помощи циркуля длину основания на боковой стороне (точка C). Вторая проверка — противолежащий угол составляет 36°.

Построение пентаграммы несколько сложнее. Ее вписываем в круг, без циркуля не обойтись.

  • Центр окружности обозначаем O, через него проводим прямую до пересечения с окружностью. Одну из точек пересечения обозначаем A. Отрезок OA — диаметр окружности.
  • Находим середину отрезка OD, ставим точку E. Из центра окружности вверх до пересечения с окружностью восстанавливаем перпендикуляр. Это точка D.

Построение пентаграммы

  • Соединяем точки E и D. При помощи циркуля откладываем на радиусе точку C. Отрезок СD равен длине отрезка ED. Циркулем замеряем длину отрезка ED. Иглу ставим в точку E, ведем грифель до пересечения с радиусом. Вот и получили точку C.
  • Длинна отрезка DC — сторона пентаграммы. Замеряем ее, при помощи циркуля переносим на окружность. Для этого циркулем с отложенным расстоянием ставим еще четыре точки на окружности, поочередно соединив их, получаем пентаграмму.

Вот что интересно, если вершины полученной пентаграммы использовать для прорисовки звезды, она будет состоять из идеальных треугольников.

Применение в строительстве

Как уже говорили, неизвестно кто открыл золотое сечение, но все, что кажется нам красивым, имеет именно такое соотношение сторон. Примеров в природе очень много. Если рассматривать известные здания, то и там тоже есть та же закономерность.

Исаакиевский собор — можете посчитать ради интереса

Если вы хотите, чтобы ваш дом внутри и снаружи был привлекательным, запоминался и нравился, при создании или выборе проекта можно просчитать хотя бы основные пропорции. Внести корректировки в пропорции, возможно, не всегда легко, часто связано с дополнительными расходами. Но, если при создании проекта сразу держать в уме золотое сечение, вопросы сами по себе отпадают. На самом деле не так уж это сложно.

Например, вы хотите дом площадью около 100 квадратных метров. Длинную сторону можно принять за 12 метров. Тогда короткая находится как 62% от длинной и составит 7,44 метра. Можно сделать 7 метров или 7,5, можно увеличить до 8. Точное, до сантиметра соблюдение размеров совсем не обязательно

Важно соотношение. А «на глаз» даже в приближении смотрится гармонично. Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов

Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно

Площадь застройки в таком случае получается несколько меньше — 90-96 квадратов. Если вам надо больше — берите длинную сторону равной 13 метрам и снова считайте. Вроде как применять золотое сечение при создании плана дома понятно.

Если основные параметры строения имеют правильную пропорцию, в любом стиле здание смотрится интересно

Высота этажа в таком случае принимается как 32% от длинной части. Она составит 12*0,32 = 3,84 метра. В принципе, это соответствует нынешним представлениям о комфортных габаритах помещения, но при желании можно сделать высоту меньше. Примерно также рассчитываются, подбираются все остальные фрагменты дома.

Не стоит забывать, что дом должен вписываться также в ландшафт. Если есть какая-то доминанта — высокий холм, например, то просчитывать надо и соотношение с холмом, и с пропорциями участка. В общем, для создания гармоничной усадьбы очень многие факторы надо учитывать.

Не только прямые линии можно использовать. Правда с изогнутыми поверхностями работать сложнее, да и обходятся они дороже — нестандартное устройство всегда более затратное

По такому же принципу разрабатывают внутреннюю планировку, стараясь по возможности соблюдать требуемое соотношение. Но еще раз повторим: по возможности. Не зацикливайтесь на точном соответствии до сантиметра. Важна общая тенденция.

Как получили золотое сечение

Пропорцию золотого сечения проще всего представить, как отношение двух частей одного объекта разной длины, разделенных точкой.

Проще говоря, сколько длин маленького отрезка поместится внутри большого, или отношение самой большей из частей ко всей длине линейного объекта. В первом случае соотношение золотого сечения составляет 0,63, во втором варианте соотношение сторон равняется 1,618034.

На практике золотое сечение представляет собой всего лишь пропорцию, соотношение отрезков определенной длины, сторон прямоугольника или других геометрических форм, родственных или сопряженных размерных характеристик реальных объектов.

Первоначально золотые пропорции были выведены эмпирическим путем с помощью геометрических построений. Существует несколько способов построения или выведения гармонической пропорции:

  • Классическим разбиением одной из сторон прямоугольного треугольника и построением перпендикуляров и секущих дуг. Для этого из одного конца отрезка необходимо восстановить перпендикуляр высотой в ½ его длины и построить прямоугольный треугольник, как на схеме.Если на гипотенузе отложить высоту перпендикуляра, то радиусом, равным оставшемуся отрезку, основание рассекается на два отрезка с длинами, пропорциональными золотому сечению;
  • Методом построения пентаграммы Дюрера, гениального немецкого графика и геометра. Сегодня мы знаем метод золотого сечения Дюрера, как способ построения звезды или пентаграммы, вписанной в окружность, в которой как минимум четыре отрезка гармоничной пропорции;
  • В архитектуре и строительстве золотое сечение чаще используется в усовершенствованном виде. В этом случае используется разбиение прямоугольного треугольника не по катету, а по гипотенузе, как схеме.

К сведению! В отличие от классического золотого соотношения, архитектурная версия подразумевает соотношение сторон отрезка в пропорции 44:56.

Если стандартный вариант золотого сечения для живых существ, живописи, графики, скульптур и античных построек рассчитывался, как 37:63, то золотое сечение в архитектуре с конца XVII века все чаще стало использоваться 44:56. Большинство специалистов считают изменение в пользу более «квадратных» пропорций распространением высотного строительства.

Гармония

Гармония в саду предполагает дополнение отдельных его участков различными растениями и иными элементами в рамках единого общего. Зачастую необходимый эффект благоустройства сада достигается путем создания цветовой гармонии. Это может означать, что стилистические особенности дома повторяются в саду путем использования аналогичных строительных материалов. Единство форм, материалов и растений, a также построек создает впечатление гармонии. В качестве примера можно привести круглую мощенную камнями площадку с родезией (Rodgersia), имеющей круглые листья.

Столь же гармонично выглядят симметричные размещения растений и построек

Для этого весьма важно соблюдение пропорций

Что такое золотое сечение

Определение золотому сечению, впервые, дал Евклид в 300 году до н. э. Согласно ему, два объекта находятся в золотой пропорции, если отношение большого объекта к меньшему равно 1.6180.


Разделение отрезка на части, согласно золотому сечению Источник www.oknabm.ru

Самое известное применение золотого сечения – золотой прямоугольник. Он содержит в себе другие прямоугольники, при этом каждые соседние по величине прямоугольники, имеют соотношение длины (или ширины) партнера равное 1,618. Эту теорию можно применить и к другим объектам, разделяя их на компоненты таким же способом.

Золотое сечение, также известное как «фи». Его можно продемонстрировать уравнением

а/b=a+b/a=1,618033987, где а больше, чем b.


Золотой прямоугольник с соотношение сторон равным золотому сечению Источник www.scienceabc.com

Это явление, также демонстрирует последовательность Фибоначчи

1,1,2,3,5,8,13,21 …

Ряд начинается с 1, и строится таким образом, что каждое следующее число образуется суммой двух предыдущих. Если разделить два соседних числа, то получим результат, приближенный к божественной пропорции — 1,618.


Золотой прямоугольник в который вписана золотая спираль Источник porting-team.ru

Чтобы построить золотую сприраль вам понадобиться золотой прямоугольник, который продемонстрирован на картинке выше. Если у вас есть некоторый набор прямоугольников с соотношением сторон (например, длины и длины), двух соседних по величене квадратов, которая равняеться числу «фи», то вы можете приступить к построению золотой спирали.

Она строиться следующим образом: используя сторону квадрата как радиус вы проводите дугу, которая, двигаясь по диагонали, касается точек квадрата. Продолжайте в том же духе и проводите дугу дальше по всем оставшимся точкам следующих квадратов. Пример такой спирали вы можете увидеть на картинке выше.

Пропорции в задачах

Итак, мы обсудили:

  • Когда появляется пропорция.
  • Какие арифметические действия мы можем с ней выполнять.

Осталось обсудить последний вопрос: как пропорция помогает нам решать задачи?

У пропорции члена. Если три известны, а один нет, то мы можем его найти. Причем нет большой разницы, какой именно член неизвестен: , или , или , или .

Пример 1. Найти неизвестный член пропорции .

1. Первый способ.

Перемножим крест-накрест:

Выразим :

2. Второй способ

После того как мы сократили правую дробь, поменять местами средние члены:

И сразу получаем ответ:

Ответ: .

Пример 2. Найти неизвестный член пропорции: .

Перемножим крайние и средние члены:

Ответ: .

5 способов соблюдать правило в интерьере

  1. В доме, построенном без учёта соотношения, можно сделать перепланировку комнат, чтобы пропорции соответствовали.
  2. Иногда достаточно переставить мебель или сделать дополнительную перегородку.
  3. Аналогичным образом меняется высота и длина окон и дверей.
  4. В цветовом оформлении получение упрощённого соотношения достигается за счёт 60% основного цвета, 30% — оттеняющего, и остальных 10% — усиливающих восприятие тонов.
  5. Высота и длина мебели должна соизмеряться высотой потолков и шириной простенков.

Приложение этой нормы в интерьере, как архитектурно оформленном пространстве, объединяют с понятиями самоорганизации, рекурсии, асимметрии, красоты.

Необходимое исключение из правила: зеркальный пейзаж

Итак, зачем же мы столько времени изучали правило третей, раз его можно нарушить? Более того, это правило нужно нарушать! Но делать это крайне осторожно и, главное, целесообразно. Вот перед вами раскрывается неземной красоты пейзаж, отражаемый в реке или озере

И нужно суметь запечатлеть всю эту красоту

И нужно суметь запечатлеть всю эту красоту.

Если мы расположим горизонт в нижней части кадра, то упустим из виду отражение, а горизонт в верхней части кадра сделает акцент на воде, но может обрезать всю остальную местность. Но выход есть! Единственный вариант – разместить горизонт строго по середине. Благодаря чему у вас верх и низ фотографии будут повторять друг друга, создавая ощущение фантастического зазеркалья.

Помните, что следовать нормам довольно легко, грамотно же их использовать и при необходимости нарушать требует тонкого восприятия фотографии и ее задач, наличие вкуса и собственного стиля, которые автор желает выразить в сделанном снимке. Дерзайте, не боитесь экспериментировать и пусть ваш кадр будет оригинальным и запоминающимся!

Ну что, как вам статья? Я надеюсь, она ответила на ваши вопросы? Я больше чем уверен, что да! И так, если вы нацелены, на глубокое изучение основ фотографии, то мой блог именно для вас, а еще вам в помощь видео курс, замечательного фотографа «Цифровая зеркалка для новичка 2.0» или «Моя первая ЗЕРКАЛКА», который будет просто не заменим в вашем начинании и станет путеводителем в мир фотографий.

Цифровая зеркалка для новичка 2.0 — для фанатов камеры зеркальной NIKON.

Моя первая ЗЕРКАЛКА — для фанатов камеры зеркальной CANON.

И конечно любая фотография, после съемки проходит, цифровую обработку, в таких программах как Photoshp и/или Lightroom. Ими пользуюсь и я. Для начала я рекомендую начинать с Lightroom и к счастью для вас, существует видео курс, который очень помог моим приятелям, начинающим фотографам, «Lightroom — незаменимый инструмент современного фотографа». Так что дерзайте, творите чудеса, все в ваших руках!

Что же, до скорого! Читайте мой блог, здесь вы всегда найдете что-то интересное и полезное по искусству фотографии. Для удобства можно подписаться на рассылку, и тогда абсолютно точно важная информация не пройдет мимо вас. Делитесь моими статьями с друзьями через социальные сети, чтобы они тоже были в курсе. Успехов!

Всех вам благ, Тимур Мустаев.

Использование Золотого сечения

Считается, что Золотое сечение использовалось как минимум 4000 лет в изобразительном искусстве и дизайне. В более современные времена Золотое сечение можно наблюдать в музыке, искусстве и дизайне. Применяя аналогичную рабочую методологию, вы можете привнести те же ощущения дизайна в вашу собственную работу.

Давайте посмотрим на пару примеров.

Древнегреческая архитектура использует Золотое сечение для определения нужных размеров

Древнегреческая архитектура использовала Золотое сечение, чтобы определить идеальные размерные соотношения между шириной здания и его высотой, размером портика и даже положением колонн, поддерживающих конструкцию.

Конечный результат — здание, которое ощущается полностью пропорционально. Неоклассическое архитектурное движение также повторно использовало эти принципы.

Леонардо да Винчи широко использовал Золотое сечение

Леонардо да Винчи, как и многие другие художники на протяжении веков, широко использовал Золотое сечение для создания идеальных композиций. В «Тайной вечере» фигуры располагаются в нижних двух третях (большей из двух частей Золотого сечения), и положение Иисуса идеально строится путем расположения золотых прямоугольников по всему холсту.

Есть также многочисленные примеры Золотого сечения в природе — вы можете наблюдать это вокруг себя. Цветы, морские раковины, ананасы и даже соты.

Создание золотого сечения

Создание золотого прямоугольника довольно просто, и начинается с базового квадрата. Выполните следующие действия, чтобы создать свое собственное Золотое сечение:

01. Нарисуйте квадрат

Начните с рисования квадрата любого размера. Сторона этого квадрата будет формировать длину «короткой стороны» прямоугольника.

Разделите ваш квадрат пополам вертикальной линией по центру. В результате получится два прямоугольника.

В одном из этих прямоугольников нарисуйте прямую линию от одного угла до противоположного угла.

04. Поверните линию

Поверните эту линию, поворачивая от нижней (или верхней) точки, пока она не совпадет с нижней частью первого прямоугольника.

05. Создайте новый прямоугольник

Создайте прямоугольник, используя новую горизонтальную линию и исходный прямоугольник в качестве направляющих. Это будет ваш золотой прямоугольник.

Использование Золотого сечения проще, чем вы думаете. Есть несколько быстрых трюков, которые вы можете использовать, чтобы представить идею в своих макетах.

Быстрый способ

Если вы когда-либо сталкивались с «Правилом третей», вы будете знакомы с идеей, что, разделив область на равные трети как по вертикали, так и по горизонтали, пересечение линий обеспечит естественный фокус для фигуры.

Фотографов учат размещать ключевой объект на одной из этих пересекающихся линий, чтобы получить идеальную композицию, и тот же принцип можно использовать в макетах страниц, макетах веб-сайтов и в постерах.

Правило третей может быть применено к любой фигуре, если вы примените его к прямоугольнику с пропорциями приблизительно 1: 1,6, вы получите золотой прямоугольник, что делает композицию еще более приятной для глаз.

Полная реализация Золотого сечения

Если вы хотите полностью внедрить Золотое сечение в свой дизайн, вы можете сделать это, обеспечив соотношение между областью содержимого и боковой панелью (например, в дизайне веб-сайта) в соотношении 1: 1,61.

Можно округлить это число вверх или вниз на одну или две точки, чтобы получить числа с пикселями или точками. Поэтому, если у вас есть область содержимого 640 пикселей, боковая панель 400 пикселей будет достаточно хорошо соответствовать золотому сечению.

Использование Золотого сечения в макете веб-страницы обеспечивает естественный, приятный результат.

Конечно, вы также можете разделить области контента и боковой панели вверх, используя одинаковое соотношение, и связь между верхним колонтитулом, областью контента, нижним колонтитулом и навигацией также может быть разработана с использованием того же базового золотого коэффициента.

Золотое сечение в природе, человеке, искусстве

Прежде, чем мы начнем, хотелось бы уточнить ряд неточностей. Во-первых, само определение золотого сечения в данном контексте не совсем верно. Дело в том, что само понятие «сечение» — это термин геометрический, обозначающий всегда плоскость, но никак не последовательность чисел Фибоначчи.

И, во-вторых, числовой ряд и соотношение одного к другому, конечно, превратили в некий трафарет, который можно накладывать на все, что кажется подозрительным, и очень радоваться, когда есть совпадения, но все же, здравый смысл терять не стоит.

Однако, «все смешалось в нашем королевстве» и одно стало синонимом другого. Так что в общем и целом, смысл от этого не потерялся. А теперь к делу.

Вы удивитесь, но золотое сечение, точнее пропорции максимально приближенные к нему, можно увидеть практически везде, даже в зеркале. Не верите? Давайте с этого и начнем.

Пропорции золотого сечения в человеке

Знаете, когда я училась рисовать, то нам объясняли, как проще строить лицо человека, его тело и прочее. Все надо рассчитывать, относительно чего-то другого.

Все, абсолютно все пропорционально: кости, наши пальцы, ладони, расстояния на лице, расстояние вытянутых рук по отношению к телу и так далее. Но даже это не все, внутреннее строение нашего организма, даже оно, приравнивается или почти приравнивается к золотой формуле сечения. Вот какие расстояния и пропорции:

  • от плеч до макушки к размеру головы = 1:1.618

  • от пупка до макушки к отрезку от плеч до макушки = 1:1.618

  • от пупка до коленок и от коленок до ступней = 1:1.618

  • от подбородка до крайней точки верхней губы и от нее до носа = 1:1.618

Разве это не удивительно!? Гармония в чистом виде, как внутри, так и снаружи. И именно поэтому, на каком-то подсознательном что-ли уровне, некоторые люди не кажутся нам красивыми, даже если у них крепкое подтянутое тело, бархатная кожа, красивые волосы, глаза и прочее и все остальное. Но, все равно, малейшее нарушений пропорций тела, и внешность уже слегка «режет глаза».

Короче говоря, чем красивее кажется нам человек, тем ближе его пропорции к идеальным. И это, кстати, не только к человеческому телу можно отнести.

Золотое сечение в природе и ее явлениях

Классическим примером золотого сечения в природе является раковина моллюска Nautilus pompilius и аммонита. Но это далеко не все, есть еще много примеров:

  • в завитках человеческого уха мы можем увидеть золотую спираль;

  • ее же (или приближенную к ней) в спиралях, по которым закручиваются галактики;

  • и в молекуле ДНК;

  • по ряду Фибоначчи устроен центр подсолнуха, растут шишки, середина цветов, ананас и многие другие плоды.

Друзья, примеров настолько много, что я просто оставлю тут видеоролик (он чуть ниже), чтобы не перегружать текстом статью. Потому что, если эту тему копать, то можно углубиться в такие дебри: еще древние греки доказывали, что Вселенная и, вообще, все пространство, — спланировано по принципу золотого сечения.

Вы удивитесь, но эти правила можно отыскать даже в звуке. Смотрите:

  • Наивысшая точка звука, вызывающая боль и дискомфорт в наших ушах, равна 130 децибелам.

  • Делим пропорцией 130 на число золотого сечения φ = 1,62 и получаем 80 децибел — звук человеческого крика.

  • Продолжаем пропорционально делить и получаем, скажем так, нормальную громкость человеческой речи: 80 / φ = 50 децибел.

  • Ну, а последний звук, который получим благодаря формуле – приятный звук шепота = 2,618.

По данному принципу можно определить оптимально-комфортное, минимальное и максимальное число температуры, давления, влажности. Я не проверяла, и не знаю, насколько эта теория верна, но, согласитесь, звучит впечатляюще.

Главное, только не увлекаться этим, ведь если мы хотим что-то в чем-то увидеть, то увидим, даже если этого там нет

Вот я, например, обратила внимание на дизайн PS4 и увидела там золотое сечение =) Впрочем, эта консоль настолько классная, что не удивлюсь, если дизайнер, и правда, что-то там мудрил

Золотое сечение в искусстве

Тоже очень большая и обширная тема, которую стоит рассмотреть отдельно. Тут лишь помечу несколько базовых моментов. Самое примечательное, что многие произведения искусства и архитектурные шедевры древности (и не только) сделаны, по принципам золотого сечения.

  • Египетские и пирамиды Майя, Нотр-дам де Пари, греческий Парфенон и так далее.

  • В музыкальных произведениях Моцарта, Шопена, Шуберта, Баха и прочих.

  • В живописи (там это наглядно видно): все самые знаменитые картины известных художников сделаны с учетом правил золотого сечения.

  • Эти принципы можно встретить и в стихах Пушкина, и в бюсте красавицы Нефертити.

  • Даже сейчас правила золотой пропорции используются, например, в фотографии. Ну, и конечно, во всем остальном искусстве, включая кинематограф и дизайн.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector